
Probl. Anal. Issues Anal. Vol. 8 (26), No 3, 2019, pp. 125–136 125
DOI: 10.15393/j3.art.2019.6570

UDC 517.547, 517.588

S. Naik, P. K. Nath

A NOTE ON A TWO-PARAMETER FAMILY OF
OPERATORS Ab,c ON WEIGHTED BERGMAN SPACES

Abstract. In this article, we prove that the two-parameter fam-
ily of operators Ab,c is bounded on the weighted Bergman spaces
Bp
α+c−1 if α+ 2 < p and unbounded if α+ 2 = p.
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1. Introduction. Let D denote the unit disc in the complex plane
C, ∂D its boundary, H(D) the set of all analytic functions on D and
dm(·) = 1/π r drdθ the normalized Lebesgue area measure on D. For
0 < p <∞, the weighted Bergman space Bp

α for −1 < α <∞ consists of
functions f ∈ H(D), such that

‖f‖p
Bpα

= (α + 1)

∫
D

|f(z)|p(1− |z|2)αdm(z) =

=
α + 1

π

1∫
0

Mp
p (r, f)(1− r2)αrdr <∞,

where Mp
p (r, f) =

2π∫
0

|f(reiθ)|pdθ.

To define the adjoint of the generalized Cesáro operator, we need the Gaus-
sian hypergeometric function. Let (a, n) be the shifted factorial defined
by Appel’s symbol

(a, n) = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n ∈ N = {1, 2, 3, . . .}
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and (a, 0) = 1 for a 6= 0. The Gaussain hypergeometric function is defined
by the power series expansion

F (a, b; c; z) =
∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n!
(|z| < 1),

where a, b, c are complex numbers, such that c 6= −m, m = 0, 1, 2, 3, . . . ,
and we assume c 6= −m, m = 0, 1, 2, 3, . . . , to avoid zero denominators.
Clearly, F (a, b, c, z) belongs to H(D). Many properties of the hyperge-
ometric functions are found in [1]. Asymptotic behavior of the zero-
balanced (i. e., the c = a+b case) is well-known. For the non-zero balanced
case, improved formulation is obtained in [4, 12], whereas the geometric
properties of Gaussian hypergeometric functions are considered, for exam-
ple, in [9,10]. The same problems for linear and convolution operator are
dealt with in [11].

Let b, c ∈ C with Re b > 0, Re c > 0. For a function f(z)=
∑∞

n=0 anz
n,

f(z) ∈ H(D), the two-parameter family of Cesáro averaging operators Pb,c
is given by

Pb,cf(z) =
∞∑
n=0

(
1

Ab+1;c
n

∞∑
k=n

bn−kak

)
zn,

where
Ab;cn =

(b, n)

(c, n)
,

and bk are given by b0 = 1,

bk =
1 + b− c

c
Ab+1;c+1
k−1 =

1 + b− c
b

Ab;ck

for k > 1. The operators Pb,c were introduced in [2] and have been
studied for boundedness on various function spaces, such as Hp, BMOA,
Ba [7, 8], on mixed norm spaces [6], as well as on the Dirichlet space [7].
For b = 1 + α and c = 1, we obtain the generalized Cesáro operators
P1+γ,1 = Cγ introduced in [14]. It is known that operators Cγ are bounded
on the Hardy space for 0 < p <∞, BMOA, and Bloch space [17] and on
the Dirichlet space [16].

For b, c ∈ C, such that Re b > 0, Re c > 0, let Ab,c be the adjoint
operator of Pb,c, given by

Ab,cf(z) =
∞∑
n=0

(
∞∑
k=n

bk−nak

Ab+1;c
k

)
zn, (1)
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where f(z) =
∑∞

n=0 anz
n ∈ H(D) and Ab;ck and bk are the same as defined

for Pb,c. These operators were formally introduced in [3] and studied for
boundedness on the space of Cauchy transforms.

In the notation of Stempak [14], we find that

A1+γ,1f = Aγf.

In particular, for γ = 0

A1,1f = Af =
∞∑
n=0

(
∞∑
k=n

1

k + 1
ak

)
zn,

where Aγ is the adjoint operator of the generalized Cesáro operator Cγ
(see [17]). If γ = 0, the Aγ is simply adjoint of the classical Cesáro
operator C (see [13]). Now we recall a known result that gives an integral
representation of the operator Ab,c.
Lemma 1. [3] Let b, c ∈ C with Re b > 0, Re c > 1 and function
ϕt,s(z) = 1− t− s+ st+ tz. Then

Ab,cf(z) = M

1∫
0

1∫
0

sc−2(1− t)b−1f(ϕt,s(z)) ∗ F (c,1; 1;ϕt,s(z))dsdt,

where M = (1 + b− c)(c− 1).

Here ∗ denotes the Hadamard product (or convolution) of power series.
That is, if f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n are two analytic

functions in |z| < R, then convolution between f and g is denoted by
f ∗ g and is defined by (f ∗ g)(z) =

∑∞
n=0 anbnz

n. This series converges for
|z| < R2. Moreover,

(f ∗ g)(z) =
1

2πi

∫
|w|=p

f(w)g(z/w)
dw

w
, |z| < ρR < R2.

2. Preliminary results. In this section, we recall few preliminary
results, which are used to state and prove the main results of this article.
The adjoint operator was considered in [13] for the case (γ = 0) and in [17].
In [13], Siskakis proved the following result.

Theorem 1. The operator A is bounded on the weighted Bergman
space Bp

α if and only if α + 2 < p.
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Stević proved, in [15], a generalization of Theorem 1 for the operators
Aγ, when γ 6= 0:

Theorem 2. The operator Aγ is bounded on the weighted Bergman
space Bp

α if and only if α + 2 < p.

The main aim of this article is to generalize Theorem 2 by finding
conditions on the parameters b and c for which the operators Ab,c are
bounded on the weighted Bergman spaces.

We will use the following lemma in the sequel.

Lemma 2. [5, p. 65] For each 1 < α < ∞ there is a positive constant
C = C(α), such that

π∫
−π

|1− reiθ|−α dθ 6 C(1− r)−(α−1),

if 0 6 r < 1.

Henceforth, C,K, and C1 denote positive constants, whose values are
different at different occurrences.

3. Main Results. In this section, we consider the so-called convolu-
tion operator and prove its boundedness on the weighted Bergman space
Bp
α+c−1 for c > 1. Also, we state and prove the main result of this paper.
From now onwards, we denote F (z) = F (1, c; 1; z) for all z ∈ D.

Lemma 3. If p ∈ [1,∞), α > −1, c > 1, f ∈ Bp
α, then f ∗ F ∈ B

p
α+(c−1)p.

Proof. Let f ∈ Bp
α. Then

α + 1

π

1∫
0

Mp
p (f, r)(1− r2)αrdr <∞. (2)

Using the definition of convolution and the fact that F (1, c; 1; z) =(1−z)−c,
for 0 < r < ρ < 1, we have

Mp
p (f ∗ F, r) =

1

2π

2π∫
0

|(f ∗ F )(ρeiθ)|pdθ =

=
1

2π

2π∫
0

∣∣∣ 1

2π

2π∫
0

F (ρeit)f
(r
ρ
ei(θ−t)

)
dt
∣∣∣pdθ =
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=
1

2π

2π∫
0

∣∣∣ 1

2π

2π∫
0

(1− ρeit)−cf
(r
ρ
ei(θ−t)

)
dt
∣∣∣pdθ.

Applying Minkowski’s integral inequality and Lemma 2 above, we have

Mp(f ∗ F, r) 6
1

2π

2π∫
0

( 1

2π

2π∫
0

∣∣∣(1− ρeit)−cf(r
ρ
ei(θ−t)

)∣∣∣pdθ) 1
p
dt 6

6
1

2π

2π∫
0

( 1

2π

2π∫
0

∣∣∣1− ρeit∣∣∣−cp∣∣∣f(r
ρ
ei(θ−t)

)∣∣∣pdθ) 1
p
dt =

=
1

2π

2π∫
0

∣∣1− ρeit∣∣−c dt( 1

2π

2π∫
0

∣∣∣f(r
ρ
ei(θ−t)

)∣∣∣pdθ) 1
p

=

=
1

2π
C(1− ρ)−c+1Mp

(
f,
r

ρ

)
.

From the above inequality, we find

1∫
0

(1− ρ)(c−1)pMp
p (f ∗ F, r)(1− r)αdr 6K

1∫
0

Mp
p

(
f,
r

ρ

)
(1− r)αdr,

where K = C/2π.
Now, taking r = ρ2, we have

1∫
0

Mp
p (f ∗ F, ρ2)(1− ρ2)α+(c−1)pdρ2 6

6 K(1 + ρ)(c−1)p
1∫

0

Mp
p (f, ρ) (1− ρ2)αdρ2.

A simple calculation shows:

1∫
0

Mp
p (f ∗ F, ρ2)(1− ρ4)α+(c−1)qρ2dρ2 6 K

1∫
0

Mp
p (f, ρ) (1− ρ2)αρ2dρ2.
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The last inequality and (2) give

1∫
0

Mp
p (f ∗ F, ρ2)(1− ρ4)α+(c−1)qρ2dρ2 <∞.

This completes the proof. �

Now we give an estimate on the norm of the convolution operator Iφ(f)
on Bp

α.

Theorem 3. Let p ∈ (0,∞), α > −1, c > 1, φ : D → D be a non-
constant analytic function. Then the operator Iφ(f) = (f ∗ F )(φ), where
F = F (1,c; 1, z) on Bp

α+c−1(D), satisfies the following inequality:

‖Iφ(f)‖Bpα+c−1
6 C

(
‖φ‖∞ + |φ(0)|
‖φ‖∞ − |φ(0)|

)α+2
p

‖f‖Bpα ,

C ≡
(

D
(2π)2

)
if α > 0 and C =

(
D

(2π)2

)
(‖φ‖∞+|φ(0)|)

α
p (‖φ‖∞+3|φ(0)|)−

α
p .

Proof. We will use the method of Siskakis [13]. Let a = |φ(0)| and
b = ‖φ‖∞ and fix 0 < r < 1. By the well known consequence of the
Schwarz-pick lemma on the map φ1 = b−1φ, we have |φ(z)| 6 (ba+b2r)

(b+ar)
,

for |z| 6 r. Since a 6 b, we have (a+br)
(b+ar)

6 ((b−a)r+2a)
(b+a)

for all 0 < r < 1,
so |φ(z)| 6 bR 6 R, where R = R(r) = ((b−a)r+2a)

(b+a)
for all 0 < r < 1. If

f ∗ F ∈ Bp
α+c−1(D), let |(u ∗ F )(z)| be the harmonic extension

|(f ∗ F )(Reiθ)|p on |z| 6 bR; |(u ∗ F )(z)| is continuous on |z| 6 bR and
majorizes |(f ∗ F )(z)|p there, so

|(f ∗ F )(φ(z))|p 6 |(u ∗ F )(φ(z))| for |z| 6 r.

It follows that

Mp
p ((f ∗ F )φ, r) =

2π∫
0

|(f ∗ F )(φ(reiθ))|pdθ 6
2π∫
0

|(u ∗ F )(φ(reiθ))|dθ. (3)

Now, for 0 < ρ < 1,

(u ∗ F )(ρφ(0)) =
1

2π

2π∫
0

F (ρeiθ)u(φ(0)e−iθ)dθ,



Generalized Cesáro operator 131

|(u ∗ F )(ρφ(0))| =
∣∣∣ 1

2π

2π∫
0

F (ρeiθ)u(φ(0)e−iθ)dθ
∣∣∣ 6

6
1

2π

2π∫
0

|F (ρeiθ)||u(φ(0)e−iθ)|dθ =

=
1

2π

2π∫
0

|1− ρeiθ|−cu(φ(0)e−iθ)dθ. (4)

Finally, by Harnack’s inequality and the Mean Value Theorem, we have

u(φ(0)e−iθ) 6
bR + a

bR− a
u(0) =

bR + a

bR− a
1

2π

2π∫
0

|f(bReiθ)|pdθ. (5)

From (3), (4), and (5) and using Lemma 2, we obtain

Mp
p ((f ∗ F )φ, r) 6

1

(2π)2

(
bR + a

bR− a

) 2π∫
0

|1− ρeiθ|−c
[ 2π∫

0

|f(dReit)|pdt
]
dθ 6

6
D(1− ρ)−c+1

(2π)2

(
bR + a

bR− a

) 2π∫
0

|f(bReiθ)|pdθ =

=
D(1− ρ)−c+1

(2π)2

(
bR + a

bR− a

)
Mp

p (f,R). (6)

Now multiply both sides of (6) by (1 − r2)αr and integrate with respect
to r from 0 to 1 to get

1∫
0

Mp
p ((f ∗ F )φ, r)(1− ρ)c−1(1− r2)αrdr 6

6
D

(2π)2

1∫
0

(
bR + a

bR− a

)
Mp

p (f,R)(1− r2)αrdr.

Taking ρ = r2, we get
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1∫
0

Mp
p ((f ∗ F )φ,r)(1− r2)α+c−1rdr 6

6
D

(2π)2

1∫
0

(
bR + a

bR− a

)
Mp

p (f,R)(1− r2)αrdr.

Proceeding as in [13], we get

1∫
0

Mp
p ((f ∗ F )φ, r)(1− r2)α+c−1rdr 6

6
D

(2π)2

(
b+ a

b+ 3a

)α(
b+ a

b− a

)α+2
1∫

0

(1− u2)αMp
p (f, u)udu

for −1 < α < 0.

‖Iφ(f)‖p
Apα+c−1

6
D

(2π)2

(
b+ a

b+ 3a

)α(
b+ a

b− a

)α+2

‖f‖p
Apα
.

Hence, the conclusion follows. �

The following results, regarding the boundedness of the composition
operator on the Weighted Bergman space, was proved in [13], which is a
particular case of c = 1 of our result, as given in Theorem 3.

Corollary. Let φ : D→ D be a non-constant analytic function. Then the
operator Tφ(f) = foφ on Bp

α satisfies the following inequality:

‖Tφ‖ 6 C

(
‖φ‖∞ + |φ(0)|
‖φ‖∞ − |φ(0)|

)α+2
p

,

where C = 1 if α > 0 and C = (‖φ‖∞ + |φ(0)|)
α
p (‖φ‖∞ + 3|φ(0)|)−

α
p ,

−1 < α < 0.

Now we state and prove the main result of this article.

Theorem 4. Let b, c ∈ C with Re(b) > 0 and c > 1. Then the operator
Ab,c is bounded on the weighted Bergman space Bp

α+c−1 if α + 2 < p and
unbounded for α + 2 = p.
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Proof. Case (i) Let α + 2 < p.
Here p > 1, because α > −1. Applying Minkowski’s inequality twice and
taking φ = φt,s in Theorem 3, we obtain

‖Ab,c(fm)‖Bpα+c−1
=

=K
[ ∫
U

∣∣∣ 1∫
0

1∫
0

((f ∗ F )(φt,s(z)))(1−t)b−1sc−2dsdt
∣∣∣p(1−|z|2)α+c−1dm(z)

] 1
p
6

6K

1∫
0

(∫
U

∣∣∣ 1∫
0

(f ∗ F )(φt,s(z))(1−t)b−1dt
∣∣∣p(1−|z|2)α+c−1dm(z)

) 1
p
sc−2ds6

6 K

1∫
0

1∫
0

(∫
U

∣∣∣(f ∗ F )(φt,s(z))
∣∣∣p(1−|z|2)α+c−1dm(z)

) 1
p
(1−t)b−1dtsc−2ds=

= K

1∫
0

1∫
0

‖Iφ(f)‖Bpα+c−1
(1− t)b−1dtsc−2ds 6

6 KC1‖f‖Bpα

1∫
0

1∫
0

(
2− 2s− t+ ts

t

)α+2
p

(1− t)b−1dtsc−2ds 6

6 KC1‖f‖Bpα2
α+2
p

1

c− 1

1∫
0

1

t
α+2
p

(1− t)b−1dt.

Here K = (1 + b− c)(c− 1)(α + 1). The above integral is convergent for
α+2
p
< 1. This completes the proof.

Case (ii) Let α + 2 > p.
Suppose f1(z) = 1

1−z . Using Lemma 2, we obtain

∫
U

1

|1− z|p
(1− |z|2)αdm(z) =

1

π

1∫
0

(1− r2)α
π∫

−pi

|1− reiθ|−pdθrdr 6

6
2αC

π

1∫
0

(1− r)α+1−pdr,

which is finite for α + 2 > p. Hence, f1 ∈ Apα+c−1.
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(a) For c > 1, we have:

Ab,c(f1(z)) = K

1∫
0

1∫
0

(f1 ∗ F )(1− t− s+ ts+ tz)(1− t)b−1sc−2dsdt =

= K

1∫
0

1∫
0

F (1,c; 1; 1− t− s+ ts+ tz)(1− t)b−1sc−2dsdt =

= K

1∫
0

1∫
0

(1− t)b−1sc−2

(t+ s− ts− tz)c
dsdt,

where K = (1 + b− c)(c− 1). Now we find

Ab,c(f1(0)) = K

1∫
0

1∫
0

(1− t)b−1sc−2

(t+ s− ts)c
dsdt =

= K

1∫
0

1∫
0

(1− t)b−1t−csc−2
∞∑
n=0

(c)n
n!

sn
(t− 1)n

tn
dsdt =

= K
∞∑
n=0

(c)n
n!

(−1)n
1∫

0

(1− t)n+b−1t−(n+c)dt
1∫

0

sn+c−2ds =

= K
∞∑
n=0

(c)n
n!

(−1)n
1∫

0

(1− t)n+b−1

t(n+c)
dt

1∫
0

sn+c−2ds.

Since n + c > 1, the first integral diverges. Hence, Ab,c(f1(z)) is un-
bounded.
(b) For c = 1, from (1) we have

Ab,1(f(z)) =
∞∑
n=0

( ∞∑
k=n

bk−nak

Ab+1;1
k

)
zn.

For f1(z) = 1
1−z , we find

Ab,1(f1(z)) =
∞∑
n=0

( ∞∑
k=n

bk−n

Ab+1;1
k

)
zn =

∞∑
k=0

bk

Ab+1;1
k

+
∞∑
n=1

( ∞∑
k=n

bk−n

Ab+1;1
k

)
zn.
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Hence, we have

Ab,1(f1(0)) =
∞∑
k=0

bk

Ab+1;1
k

=
∞∑
k=0

(1 + b− 1)Ab;1k
bAb+1;1

k

= b

∞∑
k=0

b+ k − 1

b+ k
,

which is divergent. �

Remark. It is still an open question, whether the operatorAb,c is bounded
on the weighted Bergman space Bp

α+c−1 for α + 2 > p.
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[17] Xiao J. Cesaŕo type operators on Hardy, BMOA and Bloch spaces, Arch.
Math., 1997, vol. 68, pp. 398 – 406.

Received June 27, 2019.
In revised form, September 26, 2019.
Accepted October 01, 2019.
Published online October 16, 2019.

Department of Applied Sciences
Gauhati University
Guwahati, Assam, India-781 014
S. Naik
E-mail: spn20@yahoo.com;
P. K. Nath
E-mail: pankaj.kumar0246@gmail.com


