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GREEN ENERGY AND EXTREMAL DECOMPOSITIONS

Abstract. We give two precise estimates for the Green energy of
a discrete charge, concentrated in an even number of points on
the circle, with respect to the concentric ring. The lower estimate
for the Green energy is attained for the points with a nonstandard
symmetry. The well-known Pólya-Schur inequality for the logarith-
mic energy is a special case of this estimate. The proof is based
on the application of dissymmetrization and an asymptotic formula
for the conformal capacity of a generalized condenser in the case
when some of its plates contract to given points. The upper bound
is established for a charge that takes values of opposite signs. Its
proof reduces to solving a problem on the so-called extremal de-
composition of a circular ring with free poles on a circle.
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1. Introduction and statement of results. There are many stu-
dies related to the extremal problems for different kinds of energy of a
discrete charge (see, e. g., the papers [2–4], [9], [10], [12], and the referen-
ces therein). In contrast to the previous research, we consider the Green
energy (see also the recent articles [1] and [5]). In addition, an extremal
problem with an alternating charge is studied.

Let θk, k = 1, . . . , 2n, be real numbers, such that

θ1 < θ2 < . . . < θ2n < θ1 + 2π

(n > 2), and let Z = {zk}2nk=1, zk = exp(iθk), k = 1, . . . , 2n. Denote by

E(Z,B) =
2n∑
k=1

2n∑
l=1
l 6=k

gB(zk, zl)
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the Green energy of the collection Z with respect to the ring
B := {z : R1 < |z| < R2}, 0 < R1 < 1 < R2 < ∞. Here gB(z,zk)
is the Green function of the domain B with poles at zk, k = 1, . . . , 2n.

The following statement is valid.

Theorem 1. For any collection of points Z, and for any numbersR1, R2,
the inequality

E(Z,B) > E(Z∗, B) (1)

holds, where Z∗ = {z∗k}2nk=1, and the symmetrically located points z∗k
are defined by the relations |z∗k| = 1, argz∗2j−1 = −η/(2n) + 2πj/n,

argz∗2j = η/(2n) + 2πj/n, j = 1, . . . , n, η =
n∑

j=1

(θ2j − θ2j−1).

The proof of Theorem 1 is based on the theory of the condenser ca-
pacities and dissymmetrization. These ideas go back to the book [4]. By
taking the limit η → 0 in (1), we obtain an inequality for the Green en-
ergy of a charge concentrated in an unrestricted number of points (not
necessary even). Passing to the limit R1 → 0, R2 → ∞, inequality (1)
gives the classical Pólya-Schur inequality

n∏
k=1

n∏
l=1
l 6=k

|zk − zl| 6
n∏

k=1

n∏
l=1
l 6=k

|z∗k − z∗l | = nn,

where zk, k = 1, . . . , n, are some points on the unit circle |z| = 1 and
z∗k = exp(2πik/n), k = 1, . . . , n.

Theorem 2. Let Z and B be as above. Then, for the discrete Green
energy

E(Z,B) :=
2n∑
k=1

2n∑
l=1
l 6=k

(−1)k+lgB(zk, zl),

we have
E(Z,B) 6 E(Z∗, B), (2)

where Z∗ = {z∗k}2nk=1, z
∗
k = exp(πik/n), k = 1, . . . , 2n.

The proof of inequality (2) is carried out by reduction to the extremal
decomposition problems, which have a long history and many applications
[6], [11]. A significant contribution to the solution of such problems was



40 V. N. Dubinin

made by N. A. Lebedev [13]. By taking the limit R1 → 0, R2 →∞ in (2),
we have

n∏
k=1

n∏
l=1
l 6=k

|zk − zl|(−1)
k+l

>
(n

2

)2n
.

This inequality has been proved in [7] (see also [6, p. 127]).
2. Proof of Theorem 1. The notions and notation from the book [6]

will be used in the proof below. For sufficiently small r > 0 the condenser

C∗(r) := (B, {E∗k}2nk=0,∆
∗),

where E∗0 = ∂B, E∗k = {z : |z − z∗k| 6 r}, k = 1, . . . , 2n, and ∆∗ =
= {0, 1, . . . , 1} is well defined [6, p. 33]. Let Φ be the group of symmetries
of C, formed by the compositions of the reflections with respect to the rays
{z : argz = 2πk/n}, k = 1, . . . , n and the bisectors of the angles formed
by these rays ("dihedral group"). The condenser C∗(r) is symmetric with
respect to the group Φ (Φ-symmetric). By Lemma 4.3 from [6], there exist
a dissymmetrization Dis, such that DisE∗ = E. Here

E∗ =
n⋃

j=1

{
z : |z| = 1, − η

2n
+

2πj

n
6 arg z 6

η

2n
+

2πj

n

}
,

E =
n⋃

j=1

{z : |z| = 1, θ2j−1 6 arg z 6 θ2j} .

According to Theorem 4.14 [6], we obtain the inequality for the capacities:

capC∗(r) > capDisC∗(r). (3)

It is clear that
DisC∗(r) = (B,{Ek}2nk=0,∆

∗),

where E0 = ∂B and Ek = {z : |z − zk| 6 r}, k = 1, . . . , 2n.
In view of Theorem 2.1 from [6], the following asymptotic equalities

hold as r → 0:

cap C∗(r) = − 4πn

log r
−

− 2π
{ 2n∑

k=1

log r(B, z∗k) + E(Z∗, B)
}( 1

log r

)2
+ o
(( 1

log r

)2)
,
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capDisC∗(r) = − 4πn

log r
−

− 2π
{ 2n∑

k=1

log r(B, zk) + E(Z,B)
}( 1

log r

)2
+ o
(( 1

log r

)2)
,

where r(B, zk) is the inner radius of B with respect to the point zk,
k = 1, . . . , n. Note that

r(B, z∗k) = r(B, zk), k = 1, . . . , 2n.

Substituting these equalities in (3), we obtain the required inequality (1).

3. Proof of Theorem 2. Consider at the condenser

C(r) = (B, {Ek}2nk=0,∆),

where B, Ek, k = 0, 1, . . . , 2n, as in Section 2, ∆ = {0, 1,−1, 1, . . . ,−1}.
Let u be the potential function of C(r) [6, p. 13]. In view of the asymptotic
formula (2.10) [6], for r → 0∫

B\∪2nk=1Ek

|Ou|2 = cap C(r) = − 4πn

log r
−

− 2π
{ 2n∑

k=1

log r(B, zk) + E(Z,B)
}( 1

log r

)2
+ o
(( 1

log r

)2)
. (4)

Consider the family of functions {uk}2nk=1 that are defined in the sectors
Dk, Dk = {z ∈ B : θk < argz < θk+1}, k = 1, . . . , 2n, respectively
(θ2n+1 = θ1 + 2π). For every k, the function uk is continuous in Dk,
harmonic in Dk\(Ek ∪ Ek+1),

uk(z) =


(−1)k+1, z ∈ Ek ∩Dk;

(−1)k+2, z ∈ Ek+1 ∩Dk;

0, z ∈ (∂Dk) ∩ (∂B),

and satisfies conditions: ∂uk/∂n = 0 on (∂Dk) ∩ B\(Ek ∪ Ek+1),
k = 1, . . . , 2n. By Dirichlet’s principle,∫

Dk\(Ek∪Ek+1)

|Ou|2 >
∫

Dk\(Ek∪Ek+1)

|Ouk|2, k = 1, . . . , 2n.



42 V. N. Dubinin

The symmetry principle for the harmonic functions gives∫
Dk\(Ek∪Ek+1)

|Ouk|2 =

∫
Dk\Hk

|Oωk|2,

where Hk = {z : |z− ζk| 6 r}, ζk = exp(i(θk+1− θk)/2), and the function
ωk is continuous in Dk, harmonic in Dk\Hk, is equal to 1 on Hk and to
zero on ∂Dk, k = 1, . . . , 2n. Once again, using formula (2.10) [6], we
conclude that ∫

Dk\(Ek∪Ek+1)

|Ou|2 >
∫

Dk\Hk

|Oωk|2 =

= − 2π

log r
− 2π[log r(Dk, ζk)]

( 1

log r

)2
+ o
(( 1

log r

)2)
, r → 0, (5)

k = 1, . . . , 2n. Note that a suitable branch of the logarithm w = log(z/ζk)
maps the sector Dk conformally and univalently onto the rectangle
Gk = {w : logR1 < Rew < logR2, |Imw| < (θk+1−θk)/2}, k = 1, . . . , 2n.
The result of the Marcus radial averaging transformation [14] of the family
{Gk}2nk=1 (with weights αk = 1/(2n), k = 1, . . . , 2n) belongs to the rectan-
gle G = {w : logR1 < Rew < logR2, |Imw| < π/(2n) (also, see [6, p. 83]
and [8]). By the Marcus theorem,

2n∏
k=1

r(Dk, ζk) =
2n∏
k=1

r(Gk, 0) 6 r2n(G, 0).

Taking into account (4) and (5), we find

2n∑
k=1

log r(B, zk) + E(Z,B) 6 2n log r(G, 0).

It is straightforward to see that in the case zk = exp(πik/n), k = 1, . . . , 2n,
we have the equality sign in the last relation. This yields the required
inequality.
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