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INTEGRAL REPRESENTATIONS FOR
THE JACOBI –PIÑEIRO POLYNOMIALS AND
THE FUNCTIONS OF THE SECOND KIND

Abstract. We consider the Hermite –Padé approximants for the
Cauchy transforms of the Jacobi weights in one interval. The de-
nominators of the approximants are known as Jacobi –Piñeiro poly-
nomials. These polynomials, together with the functions of the
second kind, satisfy a generalized hypergeometric differential equa-
tion. In the case of the two weights, we construct the basis of the
solutions of this ODE with elements of different growth rate. We
obtain the integral representations for the basis elements.
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1. Introduction. We start from the definition of the Hermite –Padé
approximants. Consider a vector ~f := (f1, . . . , fr) of germs of analytic
functions in a neighborhood of infinity:

fj(z) =
∞∑
k=0

cj,k
zk
, j = 1, . . . , r.

Hermite –Padé approximants of type II for a vector ~f and a multi-index
~n := (n1, . . . , nr) ∈ Zr+ are the rational functions

(
P~n,1
Q~n

, . . . ,
P~n,r
Q~n

)
, such

that the degree of the denominator Q~n does not exceed |~n| := n1 + · · ·+nr
and the following interpolation conditions at infinity hold:

R~n,j(z) := (Q~nfj − P~n,j) (z) = O

(
1

znj+1

)
, z →∞, j = 1, . . . ,r. (1)
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The conditions (1) form a linear homogeneous system of |~n| equations
for |~n| + 1 unknown coefficients of Q~n. So, a nontrivial solution always
exists. The numerator P~n,j is the polynomial part of the Laurent expansion
of Q~nfj at infinity. The remainder function R~n,j is the main part of the
same Laurent expansion. It is called the function of the second kind.

In this paper, we consider the Hermite –Padé approximants for a set
of Markov functions:

fj(z) = ŵj(z) :=

∫
∆

wj(x)dx

z − x
, z ∈ C \∆, j = 1, . . . , r, (2)

where ∆ := [0, 1] and w1, . . . , wr are the Jacobi positive weights in (0, 1):

wj(x) := xαj(1− x)β, x ∈ (0, 1), αj,β > −1, j = 1, . . . , r. (3)

It is well known (see [10]), that for the Markov functions (2) the in-
terpolation conditions (1) are equivalent to the system of orthogonality
relations with respect to the weights wj:∫

∆

Q~n(x)xkwj(x)dx = 0, k = 0, . . . , nj − 1, j = 1, . . . , r. (4)

The functions of the second kind can be represented as follows:

R~n,j(z) =
1

pnj(z)

∫
∆

pnj(x)Q~n(x)wj(x)dx

z − x
∀ pnj 6≡ 0 : deg pnj 6 nj. (5)

Due to the orthogonality conditions (4), the left-hand side of (5) does not
depend on the choice of the polynomial pnj of degree not exceeding nj.

It is natural to assume that the exponents αj have pairwise different
fractional parts: αj − αk 6∈ Z as j 6= k. Then the set of weights (3) forms
an algebraic Chebyshev system (AT-system, see [10]) in ∆. It follows
that the polynomial Q~n has |~n| simple zeros in ∆. Thus, all the indices
~n are normal, i. e, the degree of Q~n is equal to |~n|, it is determined up
to a constant factor, and the Hermite –Padé approximants are uniquely
determined.

The Hermite –Padé approximants for the set (2), (3) were introduced
in [11]. The polynomials Q~n are called the Jacobi –Piñeiro polynomials
of multiple orthogonality [2]. Whenever it is necessary to emphasize the
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dependence on the parameters ~α and β, the denominators Q~n and the
functions of the second kind R~n,j will be also denoted by Q~α,β

~n and R~α,β
~n,j .

In the case r = 1, Qα,β
n is the classical Jacobi polynomial on [0, 1] and Rα,β

n

is the corresponding function of the second kind, see [13], [9].
The Jacobi –Piñeiro polynomials have a number of applications. E. Mu-

khin and A. Varchenko [7] show that the zeros of Q~n along with the zeros
of their Wronskian-type determinants are the unique solution of a certain
Bethe Ansatz equation. C. Smet and W. Van Assche [12] show that their
Mellin transforms can be applied to prove the Apéri theorem on the ir-
rationality of ζ(3) and the Ball –Rivoal theorem on the infinite number
of irrational points among {ζ(2m + 1)}. M. Adler, P. van Moerbeke and
D. Wang [1] relate the Jacobi –Piñeiro polynomials to certain problems of
random matrix minor processes in the percolation theory.

The algebraic properties of Q~n were studied in [2], [4]. The limit zero
distribution of Q~n was investigated in [8], the asymptotics near the edges
of ∆ was considered in [3]. The aim of this paper is to obtain integral
representations, which can be used for describing the asymptotic behav-
ior of Q~n and R~n,j in different asymptotic regimes that are important in
applications.

The Jacobi –Piñeiro polynomials have an explicit representation [2,11]:

(1− z)βQ~n(z) =

(
r∏
j=1

z−αj

nj!

dnj

dznj
zαj+nj

)
(1− z)β+|~n|. (6)

The operators in the product of the formula (6) commute. The orthogo-
nality relations (4) can be easily checked using the integration by parts.
Similarly to the classical case r = 1, we will call the representation (6) the
Rodrigues formula. The formula (6) fixes a normalization of Q~n:

Q~n(0) =
r∏
j=1

(αj + 1)nj
nj!

,

where (α)n := (α) · · · (α + n − 1) is the Pochhammer symbol. In what
follows, we will use this normalization.

2. Generalized hypergeometric differential equation. The
Jacobi –Piñeiro polynomials preserve many properties of classical Jacobi
polynomials: they have Rodrigues representations, satisfy certain recur-
rence relations. Another such property is the relationship with (generali-
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zed) hypergeometric functions (see [4]):

(1− z)β
Q~n(z)

Q~n(0)
= r+1Fr

(
~α +~1 + ~n,−β − |~n|
~α +~1

; z

)
=: F0(z), (7)

where ~1 = (1, . . . , 1) and

pFq

(
~a
~b

; z

)
:=

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
.

It immediately follows from (7) that the function y(z) = (1−z)βQ~n(z)
satisfies the linear ordinary differential equation of order r + 1:

Lzy = 0, Lz :=
(
z
d

dz
− β − |~n|

) r∏
j=1

(
z
z

dz
+ αj + 1 + nj

)
−

− d

dz

r∏
j=1

(
z
z

dz
+ αj

)
. (8)

The set of functions

F0, z
−α1F1, . . . , z

−αrFr (9)

forms a basis of the solutions of (8), where

Fj(z) := r+1Fr

(
~α + ~n+ (1− αj)~1, −β − αj − |~n|
[ ~α ]j + (1− αj)[~1 ]j, 1− αj

; z

)
and [ ~α ]j := (α1, . . . , αj−1, αj+1, . . . , αr) is the projection of ~α onto the
hyperspace orthogonal to ~ej.

On the other hand, it can be shown that for some constants bj 6= 0 we
have

R~n,j(z)

Q~n(0)
=

π

sin παj
(−z)αjF0(z) + bjFj(z).

Therefore,
(1− z)βQ~n, z

−α1R~n,1, . . . , z
−αrR~n,r (10)

is another basis in the space of solutions of (8).
3. Integral representations. Further, for the sake of simplicity,

we restrict ourselves to the case of r = 2 weights.
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For large values of |~n|, the basis (10) is preferable to the basis (9),
since only the first element of (10) has the maximum growth rate. It
would be helpful to construct a basis where all the elements have pairwise
different growth rates. Nonetheless, it turns out that for α1 − α2 ∈ (0, 1)
and for the diagonal indices n1 = n2 the functions z−α1R~n,1 and z−α2R~n,2
are asymptotically close. Indeed, in [6] it is shown that R~n,2

R~n,1
→ zα2−α1 for

z ∈ C\(−∞, 1] as n1 = n2 →∞, where zα2−α1 is analytic outside (−∞, 0]
and positive for z > 0.

Therefore, along with the functions R~n,j, we consider the functions
R∗~n,j (see [5]):

R∗~n,2 := −zα2−α1R∗~n,1 := zα2−α1R~n,1 −R~n,2. (11)

Thus, we establish that

(1− z)βQ~n, z
−α1R~n,1, z

−α1R∗~n,1 (12)

is a basis of the solutions of (8) for r = 2.
It directly follows from the definition (11) that the functions R∗~n,j are

analytic outside (−∞, 1]. Applying the Sokhotski –Plemelj formula to (5),
we calculate the jumps of R~n,j in the interval (0, 1):

R~n,j(x+ i0)−R~n,j(x− i0) = −2πiQ~n(x)wj(x), x ∈ (0, 1).

Clearly, the jumps of R∗~n,j in (0, 1) are equal to zero and the singularities at
the point 1 are removable. So, in fact, R∗~n,j are analytic outside (−∞, 0].

For α ∈ (0, 1) the following representation for z−α holds:

z−α =
sin πα

π

0∫
−∞

(−x)−αdx

z − x
, z ∈ C \ (−∞, 0].

So for α1 − α2 ∈ (0, 1) we have the following integral representation for
the function R∗~n,2:

R∗~n,2(z) =
sin π(α1 − α2)

π

0∫
−∞

R~n,1(x)

z − x
(−x)α2−α1dx. (13)

The formula (13) carries out an analytic continuation of R∗~n,2 from the
domain C \ (−∞, 1] to C \ (−∞, 0].
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We introduce the notation for three double integrals:

F~n,0(z) :=

∮
γz

tn1+α1−α2dt

(t− z)n1+1

∮
γt

sn2+α2(1− s)n1+n2+βds

(s− t)n2+1
,

F~n,1(z) :=

1∫
0

tn1+α1−α2dt

(t− z)n1+1

∮
γt

sn2+α2(1− s)n1+n2+βds

(s− t)n2+1
,

F ∗~n,1(z) :=

0∫
−∞

tn1(−t)α1−α2dt

(t− z)n1+1

1∫
0

sn2+α2(1− s)n1+n2+βds

(s− t)n2+1
,

where γz, γt are small enough positively oriented circles around the points
z and t, respectively. The first two integrals absolutely converge under
standard conditions on the parameters: α1, α2, β > −1, n1, n2 ∈ Z+. For
absolute convergence of the third integral, we additionally require that
α1 − α2 ∈ (−n1 − 1, n2 + 1). Under these conditions, these integrals
determine holomorphic functions in the following domains:

F~n,0 ∈ H
(
C \ R \∆

)
, F~n,1 ∈ H (C \∆) , F ∗~n,1 ∈ H (C \ (−∞,0]) .

The relation between these integrals and the considered Hermite –Padé
approximants is given in the following theorem.

Theorem 1. We have the following integral representations for the set
of functions (w1Q~n, R~n,1, R

∗
~n,1):

(w1Q~n, R~n,1, R
∗
~n,1) = −

(
F~n,0
4π2

,
F~n,1
2πi

,
sin π(α1 − α2)F ∗~n,1

π

)
. (14)

The integral representations for Q~n, R~n,1 are simple consequences of
the Rodrigues formula (6), the formula for R∗~n,1 is less trivial.

4. Integral representation for Q~n. Rewrite the Rodrigues formula
(6) for the case r = 2:

zα1(1− z)βQ~n(z) =
1

n1!

dn1

dzn1
zn1+α1−α2

1

n2!

dn2

dzn2
zn2+α2(1− z)n1+n2+β.

We obtain the integral representation for Q~n from this formula by applying
twice the Cauchy formula for derivative of an analytic function. Indeed,
according to the Cauchy formula, we have
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1

n2!

dn2

dtn2
tn2+α2(1− t)n1+n2+β =

=
1

2πi

∮
γt

sn2+α2(1− s)n1+n2+βds

(s− t)n2+1
=:

G(t)

2πi
. (15)

By definition, the functions F~n,0, F~n,1 are related to G by the equalities:

F~n,0(z) =

∮
γz

tn1+α1−α2G(t)dt

(t− z)n1+1
, F~n,1(z) =

1∫
0

tn1+α1−α2G(t)dt

(t− z)n1+1
. (16)

Applying the Cauchy formula again, we obtain the required:

w1(z)Q~n(z) =
1

2πi

1

n1!

dn1

dzn1
zn1+α1−α2G(z) =

1

(2πi)2

∮
γz

tn1+α1−α2G(t)dt

(t− z)n1+1
.

Note that by the formula (6) (for r = 1) the function G defined by the
formula (15) is expressed through the classical Jacobi polynomials:

G(t)

2πi
= tα2(1− t)n1+βQα2,n1+β

n2
(t). (17)

5. Integral representation for R~n,1. We need the following lemma,
which is a consequence of the partial integration formula.

Lemma 1. 1) Let ũ, ṽ ∈ Cn[0, 1] and u(x) := xc0(1 − x)c1 ũ(x),
v(x) := xd0(1 − x)d1 ṽ(x), where c0 + d0 > n − 1 and c1 + d1 > n − 1;
then

1∫
0

u(x)
dnv

dxn
(x)dx = (−1)n

1∫
0

dnu

dxn
(x)v(x)dx.

2) Let ũ, ṽ ∈ Cn[1, +∞), ũ(k)(x), ṽ(k)(x) = O
(
x−k
)
as x → +∞, k =

= 0, . . . , n and u(x) := xc0−c1(x − 1)c1ũ(x), v(x) := xd0−d1(x − 1)d1 ṽ(x),
where c1 + d1 > n− 1 and c0 + d0 < n− 1; then

+∞∫
1

u(x)
dnv

dxn
(x)dx = (−1)n

+∞∫
1

dnu

dxn
(x)v(x)dx.
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The conditions of the lemma are sufficient for the absolute convergence
of the integrals and equality to zero of all non-integral terms, see section 7
for the proof.

Integral representation for R~n,1 is derived from (5) and (16) applying
Lemma 1 and (17):

R~n,1(z) =

1∫
0

Q~n(t)w1(t)dt

z − t
=

=
1

2πi

1∫
0

dt

z − t
1

n1!

dn1

dtn1
tn1+α1−α2G(t) =

−1

2πi

1∫
0

tn1+α1−α2G(t)dt

(t− z)n1+1
.

We obtain one more integral representation for R~n,1. We use the for-
mula (15) and again apply Lemma 1 to continue the chain of identities:

−R~n,1(z) =

1∫
0

tn1+α1−α2dt

(t− z)n1+1

1

n2!

dn2

dtn2
tn2+α2(1− t)n1+n2+β =

= (−1)n2

∫ 1

0

tn2+α2(1− t)n1+n2+βdt
1

n2!

dn2

dtn2

tn1+α1−α2

(t− z)n1+1
=

=
(−1)n1+n2+1

zn2+1−α1+α2

1∫
0

tn2+α2(1− t)n1+n2+βdt
1

n2!

dn2

d(t/z)n2

(
t
z

)n1+α1−α2(
1− t

z

)n1+1 .

Denote by q~n a polynomial of degree n1 defined by the formula:

q~n(x) :=
(1− x)n1+n2+1

xα1−α2n2!

dn2

dxn2

xn1+α1−α2

(1− x)n1+1
. (18)

Then we obtain the following relation for R~n,1:

−R~n,1(z) =

∫ 1

0

tn2+α1(1− t)n1+n2+β zn1q~n
(
t
z

)
dt

(t− z)n1+n2+1
. (19)

6. Integral representation for R∗~n,1. We now turn to the proof
of the last relation (14). The definition of R∗~n,j (see (11)) implies that
R∗~n,1 = −w1

w2
R∗~n,2. We will use the representation (13), which is valid under

the condition α1 − α2 ∈ (0,1). First we prove what is required under this
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restriction, and then remove the restriction by applying the principle of
analytic continuation on ~α. So, we have the following chain of equalities:

πR∗~n,2(z)

sin π(α1 − α2)
=

0∫
−∞

R~n,1(x)(−x)α2−α1dx

z − x
=

=

0∫
−∞

(−x)α2−α1dx

x− z

1∫
0

sn2+α1(1− s)n1+n2+β xn1q~n
(
s
x

)
ds

(s− x)n1+n2+1
=

=

1∫
0

sn2+α1(1− s)n1+n2+βds

0∫
−∞

xn1q~n
(
s
x

)
(−x)α2−α1dx

(s− x)n1+n2+1(x− z)
=

=

1∫
0

sn2+α1(1− s)n1+n2+βI(s, z)ds, (20)

where

I(s,z) :=

0∫
−∞

xn1q~n
(
s
x

)
(−x)α2−α1dx

(s− x)n1+n2+1(x− z)
, s > 0, z ∈ C \ (−∞, 0].

Let us transform the integral I(s,z). First, we change the variable x
to τ = s/x:

I(s, z) =

0∫
−∞

(
s
τ

)n1 q~n(τ)
(
s
−τ

)α2−α1 s
τ2
dτ(

s− s
τ

)n1+n2+1 ( s
τ
− z
) =

=
(−1)n1+n2+1

zsn2+α1−α2

0∫
−∞

τn2q~n(τ)(−τ)α1−α2dτ

(1− τ)n1+n2+1
(
s
z
− τ
) .

The expression (18) for the polynomial q~n can be rewritten, changing
the branch of the power function in the numerator and denominator:

q~n(x) =
(1− x)n1+n2+1

(−x)α1−α2n2!

dn2

dxn2

xn1(−x)α1−α2

(1− x)n1+1
.

We substitute this expression for q~n in the integral and again apply Lemma 1
(recall that for now α1 − α2 ∈ (0, 1)):
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I(s, z) =
(−1)n1+n2+1

zsn2+α1−α2

0∫
−∞

τn2dτ(
s
z
− τ
) 1

n2!

dn2

dτn2

τn1(−τ)α1−α2

(1− τ)n1+1
=

=
(−1)n1+1

zsn2+α1−α2

0∫
−∞

τn1(−τ)α1−α2dτ

(1− τ)n1+1

1

n2!

dn2

dτn2

τn2(
s
z
− τ
) .

Note that the following identity holds:

1

n2!

dn2

dτn2

τn2(
s
z
− τ
) =

(
s
z

)n2(
s
z
− τ
)n2+1 .

Using this equality, we remove one floor in the formula for I(s, z). Then
the substitution τ = t

z
gives:

I(s, z) =
(−1)n1+1

zsn2+α1−α2

0∫
−∞

τn1(−τ)α1−α2

(1− τ)n1+1

(
s
z

)n2 dτ(
s
z
− τ
)n2+1 =

= (zs)α2−α1

∫
zR−

tn1(−t)α1−α2dt

(t− z)n1+1(s− t)n2+1
.

In the last integral, we deform the contour by replacing the ray zR− with
R−. This can be done by the Cauchy theorem, since the singularities of
the integrand at the points s and z are in one of the two angles formed by
the rays, and it has the following behavior in a neighborhood of infinity:
O (1/tn2+2+α2−α1) = o (1/t). We get the following expression for I(s, z):

I(s, z) = (zs)α2−α1

0∫
−∞

tn1(−t)α1−α2dt

(t− z)n1+1(s− t)n2+1
.

Substituting this formula in (20), we obtain the expression for R∗~n,2
matching the required after changing the order of integration:

−πR∗~n,1(z)

sin π(α1 − α2)
=
πR∗~n,2(z)zα1−α2

sin π(α1 − α2)
=

=

1∫
0

sn2+α2(1− s)n1+n2+βds

0∫
−∞

tn1(−t)α1−α2dt

(t− z)n1+1(s− t)n2+1
= F ∗~n,1(z).
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Thus, the following implication is proved:

α1 − α2 ∈ (0, 1) =⇒ R∗~n,1(z) =
sin π(α1 − α2)

π
F ∗~n,1(z).

Let us note that in the above identity the left-hand side
R∗~n,1 := w1

w2
R~n,2 − R~n,1 analytically depends on ~α in the domain

{~α : Reαj > −1, j = 1, 2} by virtue of the proved integral representations
for R~n,j (the integral for R~n,2 is obtained from the integral for R~n,1 by per-
mutation of indices 1↔ 2). The integral F ∗~n,1 in the right-hand side of this
equality is an analytical function in {~α : Re (α1−α2) ∈ (−n1− 1, n2 + 1),
Re αj > −1, j = 1, 2}. By the uniqueness theorem, the equality holds in
the whole domain.

Note that for the function F ∗~n,1, the analogue of representation (16)
holds:

F ∗~n,1(z) =

0∫
−∞

tn1(−t)α1−α2g(t)dt

(t− z)n1+1
, (21)

where g is the function of the second kind for the classical Jacobi polyno-
mials (compare with the expression (17) for G):

g(t) :=

1∫
0

sn2+α2(1− s)n1+n2+βds

(s− t)n2+1
=
−Ĝ(t)

2πi
= −Rα2,n1+β

n2
(t). (22)

7. Proof of Lemma 1. 1. It is enough to verify the convergence of
at least one of the integrals and equality to zero of all non-integral terms
in the formula of integration by parts:

1∫
0

(
uv(n)

)
(x)dx =

n−1∑
k=0

(−1)k
(
u(k)v(n−1−k)

)∣∣∣∣1
0

+ (−1)n
1∫

0

(
u(n)v

)
(x)dx.

The singularities at the ends are integrable, because(
u(n)v

)
(x) = xc0+d0−n(1− x)c1+d1−nũn(x)

for certain function ũn ∈ C[0, 1] and cj + dj − n > −1, j = 0, 1. All the
non-integral terms equal zero, because(

u(k)v(n−1−k)
)

(x) = xc0+d0−n+1(1− x)c1+d1−n+1ũk(x)
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for certain function ũk ∈ C min(k+1,n−k)[0, 1], where k = 0, . . . , n− 1.
2. We apply the formula of integration by parts. Similarly to the

previous case, we verify that the integrals converge at point 1 and all the
non-integral terms at this point are equal to zero. We only need to verify
the convergence and vanishing of the non-integral terms at infinity. By
the Leibniz formula, it is easy to see that for k = 0, . . . , n we have

dk

dxk

(
1− 1

x

)c1
ũ(x) = O

(
x−k
)
, x→ +∞.

By the Leibniz formula for the kth derivative of the product:

u(k)(x) = xc0−k
k∑
j=0

bk,j x
j d

j

dxj

(
1− 1

x

)c1
ũ(x) = O

(
xc0−k

)
, x→ +∞,

where bk,j :=
(
k
j

)
(k − j)!

(
c0
k−j

)
are constants. Similar relations hold for

the function v. Eventually, we get that the function u (n)v is integrable
at infinity, because

(
u (n)v

)
(x) = O

(
xc0+d0−n

)
= O (x−1−ε) as x → +∞,

where ε := n − 1 − c0 − d0 > 0 and all the non-integral terms vanish at
infinity:(

u(k)v(n−1−k)
)

(x) = O
(
x−ε
)
, x→ +∞, k = 0, . . . , n− 1.
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Markov functions, Vestnik Moskov. Univ. Ser. I, 1987, no. 2, pp. 67 – 70.

[12] Smet C., Van Assche W. Mellin transforms for multiple Jacobi – Pineiro
polynomials, J. Approx. Theory, 2010, vol. 162, pp. 782 – 806.
DOI: https://doi.org/10.1016/j.jat.2009.09.004
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