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CONTRACTIONS WITH RESPECT TO A 𝐶-DISTANCE IN

GRAPHICAL CONE METRIC SPACES

Abstract. The aim of this paper is to prove some existence and
uniqueness results of the fixed points for Hardy-Rogers type con-
traction in cone metric spaces associated with a 𝑐-distance and
endowed with a graph. These results prepare a more general state-
ment, since we apply the condition of orbitally 𝐺-continuity of map-
ping instead of the condition of continuity, and consider cone metric
spaces endowed with a graph instead of cone metric spaces.
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1. Introduction and preliminaries. In 1996, Kada et al. [11] de-
fined the concept of 𝑤-distance in metric spaces and proved some fixed
point theorems with respect to this distance. On the other hand, in 1997,
Zabrejko [18] developed a fixed point theory in abstract metric spaces and
𝐾-normed spaces. Later, Huang and Zhang [8] reintroduced the concept
of the cone metric space by replacing the set of real numbers by an or-
dered Banach space. In 2011, Cho et al. [3] defined a cone version of the
𝑤-distance (where it is called 𝑐-distance) and obtained some fixed point
theorems under a 𝑐-distance in ordered cone metric spaces. For more re-
sults, see the papers [7] by Huang et al. and [15], [16] by Rahimi and
Soleimani Rad. Further, in 2008, Jachymski [9] equipped the underlying
metric space with a directed graph and formulated the Banach contrac-
tion in the graph language. After that, some authors extended the fixed
point theory in the graph language in [1], [12], [14], see also references
therein. Very recently, Fallahi et al. [4], [5] studied the existence of the
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fixed points for various contractive mappings with respect to a 𝑐-distance
in cone metric spaces endowed with a graph.

In this paper, we consider a 𝑐-distance in cone metric spaces with a
directed graph and obtain some fixed point theorems of Hardy-Rogers
type contraction with respect to this distance. We start by reviewing a
few basic definitions and notions, which are frequently applied.

Definition 1. [8] Let 𝐸 be a real Banach space with the zero element 𝜃.
A proper nonempty and closed subset 𝑃 of 𝐸 is called a cone if 𝑃+𝑃 ⊂ 𝑃 ,
𝜆𝑃 ⊂ 𝑃 for 𝜆 > 0 and 𝑃 ∩ (−𝑃 ) = {𝜃}.

Given a cone 𝑃 ⊂ 𝐸, Huang and Zhang [8] applied a partial ordering
⪯ with respect to 𝑃 by 𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃 . We write 𝑥 ≺ 𝑦 if
𝑥 ⪯ 𝑦 and 𝑥 ̸= 𝑦. Moreover, we denote 𝑥≪ 𝑦 if and only if 𝑦− 𝑥 ∈ int𝑃 ,
where int𝑃 is the interior of 𝑃 . If int𝑃 ̸= 𝜃, then the cone 𝑃 is named
solid. The cone 𝑃 is normal if there is a number 𝑘 > 0 such that for all
𝑥, 𝑦 ∈ 𝐸, where 𝜃 ⪯ 𝑥 ⪯ 𝑦, we have ‖𝑥‖ 6 𝑘‖𝑦‖.

Definition 2. [8] Let 𝑋 be a nonempty set. Suppose that the mapping
𝑑 : 𝑋 ×𝑋 → 𝑃 satisfies

(d1) 𝜃 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only if 𝑥 = 𝑦;
(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(d3) 𝑑(𝑥, 𝑧) ⪯ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is named a cone metric on 𝑋 and (𝑋, 𝑑) is called a cone metric
space.

For other notions and concepts, such as Cauchy sequences, conver-
gence, completeness, and continuity in cone metric spaces, we refer to [8].
We shall also make use of the following property when the cone 𝑃 is non-
normal:

(*) Let 𝑢 ⪯ 𝜆𝑢 with 𝑢 ∈ 𝑃 and 0 < 𝜆 < 1. Then 𝑢 = 𝜃.

Definition 3. [3], [17] Let (𝑋, 𝑑) be a cone metric space. A function
𝑞 : 𝑋 ×𝑋 → 𝐸 is called a 𝑐-distance on 𝑋 if the following holds:

(𝑞1) 𝜃 ⪯ 𝑞(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;
(𝑞2) 𝑞(𝑥,𝑧) ⪯ 𝑞(𝑥, 𝑦) + 𝑞(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(𝑞3) for all 𝑛 > 1 and 𝑥 ∈ 𝑋, if 𝑞(𝑥, 𝑦𝑛) ⪯ 𝑢 for some 𝑢 = 𝑢𝑥, then

𝑞(𝑥, 𝑦) ⪯ 𝑢 whenever {𝑦𝑛} is a sequence in 𝑋 converging to a point
𝑦 ∈ 𝑋;
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(𝑞4) for all 𝑐 ∈ 𝐸 with 𝑐 ∈ int𝑃 , there exists 𝑒 ∈ 𝐸 with 𝑒 ∈ int𝑃 such
that 𝑞(𝑧, 𝑦) ≪ 𝑒 and 𝑞(𝑧, 𝑥) ≪ 𝑒 imply 𝑑(𝑥, 𝑦) ≪ 𝑐.

Each 𝑤-distance is a 𝑐-distance in a cone metric space with 𝐸 = R and
𝑃 = [0,∞). But the converse does not hold. Thus, the 𝑐-distance is a
generalization of the 𝑤-distance. Moreover, for a 𝑐-distance 𝑞, 𝑞(𝑎, 𝑏) = 𝜃
is not necessarily equivalent to 𝑎 = 𝑏 and 𝑞(𝑎, 𝑏) = 𝑞(𝑏, 𝑎) does not neces-
sarily hold for all 𝑎, 𝑏 ∈ 𝑋.

Lemma 1. [3], [7] Let (𝑋, 𝑑) be a cone metric space, 𝑞 be a 𝑐-distance
on 𝑋, {𝑎𝑛} be a sequence in 𝑋, and {𝛾𝑛} and {𝛿𝑛} be two convergent
sequences to 𝜃 in 𝑃 . For any 𝑎, 𝑏, 𝑐 ∈ 𝑋, the following properties hold:

(𝑖) let 𝑞(𝑎𝑛, 𝑏) ⪯ 𝛾𝑛 and 𝑞(𝑎𝑛, 𝑐) ⪯ 𝛿𝑛 for all 𝑛 ∈ N. Then 𝑏 = 𝑐. Also,
if 𝑞(𝑎, 𝑏) = 𝜃 and 𝑞(𝑎, 𝑐) = 𝜃, then 𝑏 = 𝑐;

(𝑖𝑖) let 𝑞(𝑎𝑛, 𝑎𝑚) ⪯ 𝛾𝑛 for all 𝑚,𝑛 ∈ N with 𝑚 > 𝑛. Then {𝑎𝑛} is a
Cauchy sequence in 𝑋.

Let (𝑋, 𝑑) be a cone metric space and 𝐺 be a directed graph without
parallel edges and with the vertex set 𝑉 (𝐺) = 𝑋 and the edge set 𝐸(𝐺)
that contains all loops. Then the graph 𝐺 can be written as the ordered
pair (𝑉 (𝐺), 𝐸(𝐺)) and (𝑋, 𝑑) is the named cone metric space endowed
with the graph 𝐺. Also, The graph 𝐺 is connected if there exists a path
in 𝐺 between every two vertices of 𝐺. For more details on graphs, see [2].
In the sequel, let (𝑋, 𝑑) be a cone metric space endowed with a graph 𝐺
with 𝑉 (𝐺) = 𝑋 and ∆(𝑋) ⊆ 𝐸(𝐺), where ∆(𝑋) = {(𝑥, 𝑥) ∈ 𝑋 × 𝑋 :
𝑥 ∈ 𝑋}, Fix (𝑇 ) be the set of all fixed points of a self-map 𝑇 on 𝑋 and
𝑋𝑇 = {𝑥 ∈ 𝑋 : (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺)}.

From the idea of Jachymski [9] and Petruşel and Rus [13], Fallahi et al.
defined Picard operators in cone metric spaces and orbitally 𝐺-continuous
mappings on 𝑋 as follows.

Definition 4. [4], [5] Let (𝑋, 𝑑) be a cone metric space. A self-map 𝑇
on 𝑋 is called a Picard operator if 𝑇 has a unique fixed point 𝑥* in 𝑋 and
𝑇 𝑛𝑥→ 𝑥* for all 𝑥 ∈ 𝑋.

Definition 5. [4], [5] Let (𝑋, 𝑑) be a cone metric space endowed with
a graph 𝐺. A mapping 𝑇 : 𝑋 → 𝑋 is called orbitally 𝐺-continuous on
𝑋 if for all 𝑥, 𝑦 ∈ 𝑋 and all sequences {𝑏𝑛} of positive integers with
(𝑇 𝑏𝑛𝑥, 𝑇 𝑏𝑛+1𝑥) ∈ 𝐸(𝐺) for all 𝑛 > 1, the convergence 𝑇 𝑏𝑛𝑥 → 𝑦 implies
𝑇 (𝑇 𝑏𝑛𝑥) → 𝑇𝑦.
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Note that a continuous mapping on a cone metric space is orbitally
𝐺-continuous for all graphs 𝐺, but the converse is not generally true.

2. Main results. The following theorem is the principal result of this
paper; it uses Hardy-Rogers contraction [6].

Theorem 1. Let (𝑋, 𝑑) be a complete cone metric space endowed with a
graph 𝐺, 𝑞 be a 𝑐-distance, and 𝑇 : 𝑋 → 𝑋 be an orbitally 𝐺-continuous
mapping that preserves the edges of 𝐺; that is, (𝑥, 𝑦) ∈ 𝐸(𝐺) implies
(𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺) for all 𝑥, 𝑦 ∈ 𝑋. Suppose that there exist mappings
𝜈𝑖 : 𝑋 → [0, 1) with 𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and for 𝑖 = 1, 2, . . . , 5,
such that

𝑞(𝑇𝑥, 𝑇𝑦) ⪯ 𝜈1(𝑥)𝑞(𝑥, 𝑦) + 𝜈2(𝑥)𝑞(𝑥, 𝑇𝑥) + 𝜈3(𝑥)𝑞(𝑦, 𝑇𝑦)+ (1)
+ 𝜈4(𝑥)𝑞(𝑥, 𝑇𝑦) + 𝜈5(𝑥)𝑞(𝑦,𝑇𝑥),

𝑞(𝑇𝑦, 𝑇𝑥) ⪯ 𝜈1(𝑥)𝑞(𝑦, 𝑥) + 𝜈2(𝑥)𝑞(𝑇𝑥, 𝑥) + 𝜈3(𝑥)𝑞(𝑇𝑦, 𝑦)+ (2)
+ 𝜈4(𝑥)𝑞(𝑇𝑦, 𝑥) + 𝜈5(𝑥)𝑞(𝑇𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸(𝐺), where

(𝜈1 + 𝜈2 + 𝜈3 + 2𝜈4 + 2𝜈5)(𝑥) < 1. (3)

Then 𝑋𝑇 ̸= ∅ if and only if 𝑇 has a fixed point. Further, if 𝑇𝑧 = 𝑧, then
𝑞(𝑧, 𝑧) = 𝜃. Moreover, if the subgraph of 𝐺 with the vertex set Fix (𝑇 ) is
connected, then the restriction of 𝑇 to 𝑋𝑇 is a Picard operator.

Proof. Because Fix (𝑇 ) ⊆ 𝑋𝑇 , if 𝑇 has a fixed point, then𝑋𝑇 is nonempty.
Conversely, let 𝑥0 ∈ 𝑋𝑇 . Since 𝑇 preserves the edges of𝐺, then (𝑥𝑛, 𝑥𝑛+1) ∈
∈ 𝐸(𝐺) for all 𝑛 ∈ N, where 𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇 𝑛𝑥0. Now, by considering
𝑥 = 𝑥𝑛 and 𝑦 = 𝑥𝑛−1 in (1) and since (𝑥𝑛−1, 𝑥𝑛) ∈ 𝐸(𝐺), we have

𝑞(𝑥𝑛+1, 𝑥𝑛) = 𝑞(𝑇𝑥𝑛, 𝑇𝑥𝑛−1) ⪯ (4)
⪯ 𝜈1(𝑥𝑛)𝑞(𝑥𝑛, 𝑥𝑛−1) + 𝜈2(𝑥𝑛)𝑞(𝑥𝑛, 𝑇𝑥𝑛) + 𝜈3(𝑥𝑛)𝑞(𝑥𝑛−1, 𝑇𝑥𝑛−1)+

+ 𝜈4(𝑥𝑛)𝑞(𝑥𝑛, 𝑇𝑥𝑛−1) + 𝜈5(𝑥𝑛)𝑞(𝑥𝑛−1, 𝑇𝑥𝑛) ⪯
...

⪯ 𝜈1(𝑥0)𝑞(𝑥𝑛, 𝑥𝑛−1) + (𝜈3 + 𝜈5)(𝑥0)𝑞(𝑥𝑛−1, 𝑥𝑛) + 𝜈4(𝑥0)𝑞(𝑥𝑛+1, 𝑥𝑛)

+ (𝜈2 + 𝜈4 + 𝜈5)(𝑥0)𝑞(𝑥𝑛, 𝑥𝑛+1)

Similarly, by considering 𝑥 = 𝑥𝑛 and 𝑦 = 𝑥𝑛−1 in (2), we have

𝑞(𝑥𝑛, 𝑥𝑛+1) ⪯ 𝜈1(𝑥0)𝑞(𝑥𝑛−1, 𝑥𝑛) + (𝜈3 + 𝜈5)(𝑥0)𝑞(𝑥𝑛, 𝑥𝑛−1)+ (5)
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+ 𝜈4(𝑥0)𝑞(𝑥𝑛, 𝑥𝑛+1) + (𝜈2 + 𝜈4 + 𝜈5)(𝑥0)𝑞(𝑥𝑛+1, 𝑥𝑛).

Adding up (4) and (5), we obtain

𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1) ⪯ (𝜈1 + 𝜈3 + 𝜈5)(𝑥0)[𝑞(𝑥𝑛, 𝑥𝑛−1) + 𝑞(𝑥𝑛−1, 𝑥𝑛)]

+ (𝜈2 + 2𝜈4 + 𝜈5)(𝑥0)[𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1)].

Put 𝜇𝑛 = 𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1). Then

𝜇𝑛 ⪯ (𝜈1 + 𝜈3 + 𝜈5)(𝑥0)(𝜇𝑛−1) + (𝜈2 + 2𝜈4 + 𝜈5)(𝑥0)𝜇𝑛,

which implies 𝜇𝑛 ⪯ 𝑘𝜇𝑛−1 for all 𝑛 ∈ N, where

0 6 𝑘 =
(𝜈1 + 𝜈3 + 𝜈5)(𝑥0)

1 − (𝜈2 + 2𝜈4 + 𝜈5)(𝑥0)
< 1 (6)

by (3) and since (𝜈1 + 𝜈3 + 𝜈5)(𝑥0) > 0. By repeating this procedure, we
have 𝜇𝑛 ⪯ 𝑘𝑛𝜇0 for all 𝑛 ∈ N. Hence,

𝑞(𝑥𝑛, 𝑥𝑛+1) ⪯ 𝜇𝑛 ⪯ 𝑘𝑛[𝑞(𝑥1, 𝑥0) + 𝑞(𝑥0, 𝑥1)]. (7)

Now, let 𝑚 > 𝑛. It follows from (𝑞2), (6) and (7) that

𝑞(𝑥𝑛, 𝑥𝑚) ⪯ 𝑘𝑛

1 − 𝑘
[𝑞(𝑥1, 𝑥0) + 𝑞(𝑥0, 𝑥1)].

Since 𝑘𝑛

1−𝑘
[𝑞(𝑥1, 𝑥0)+𝑞(𝑥0, 𝑥1)] is a convergent to 𝜃 sequence, Lemma 1 (ii)

implies that {𝑥𝑛} is a Cauchy sequence. Since 𝑋 is complete, there exists
point 𝑧 ∈ 𝑋 such that 𝑥𝑛 = 𝑇 𝑛𝑥0 → 𝑧 as 𝑛 → ∞. Now, we prove that 𝑧
is a fixed point for 𝑇 . From 𝑥0 ∈ 𝑋𝑇 we have (𝑇 𝑛𝑥0, 𝑇

𝑛+1𝑥0) ∈ 𝐸(𝐺) for
all 𝑛 > 0. Thus, by the orbital 𝐺-continuity of 𝑇 , we have 𝑇 𝑛+1𝑥0 → 𝑇𝑧.
Since the limit of a sequence is unique, we conclude 𝑇𝑧 = 𝑧 and 𝑧 is a
fixed point of the mapping 𝑇 . Also, let 𝑇𝑧 = 𝑧 for 𝑧 ∈ 𝑋. It follows

from (1) that 𝑞(𝑧, 𝑧) ⪯ (𝜈1 + 𝜈2 + 𝜈3 + 𝜈4 + 𝜈5)(𝑧)𝑞(𝑧, 𝑧). Since
5∑︀

𝑖=1

𝜈𝑖(𝑧) <

< (𝜈1 + 𝜈2 + 𝜈3 + 2𝜈4 + 2𝜈5)(𝑧) < 1, then 𝑞(𝑧, 𝑧) = 𝜃 by (*).
Next, suppose that the subgraph of 𝐺 with the vertex set Fix (𝑇 ) is

connected and 𝑧* ∈ 𝑋 is a fixed point of 𝑇 . Then there exists a path (𝑥𝑖)
𝑁
𝑖=0

in 𝐺 from 𝑧 to 𝑧*, such that 𝑥1, . . . , 𝑥𝑁−1 ∈ Fix (𝑇 ) by 𝑥0 = 𝑧, 𝑥𝑁 = 𝑧*
and (𝑥𝑖−1, 𝑥𝑖) ∈ 𝐸(𝐺) for 𝑖 = 1, . . . , 𝑁 . Since 𝑞(𝑥𝑖−1, 𝑥𝑖−1) = 𝑞(𝑥𝑖, 𝑥𝑖) = 𝜃
for each 𝑖 = 1, 2, . . . , 𝑁 and by applying (1) and (2), we get

𝑞(𝑥𝑖, 𝑥𝑖−1) ⪯ (𝜈1 + 𝜈4)(𝑥𝑖)𝑞(𝑥𝑖, 𝑥𝑖−1) + 𝜈5(𝑥𝑖)𝑞(𝑥𝑖−1, 𝑥𝑖), (8)
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𝑞(𝑥𝑖−1, 𝑥𝑖) ⪯ (𝜈1 + 𝜈4)(𝑥𝑖)𝑞(𝑥𝑖−1, 𝑥𝑖) + 𝜈5(𝑥𝑖)𝑞(𝑥𝑖, 𝑥𝑖−1). (9)

Now, adding up (8) and (9), we have

𝑞(𝑥𝑖, 𝑥𝑖−1) + 𝑞(𝑥𝑖−1, 𝑥𝑖) ⪯ (𝜈1 + 𝜈4 + 𝜈5)(𝑥𝑖)[𝑞(𝑥𝑖, 𝑥𝑖−1) + 𝑞(𝑥𝑖−1,𝑥𝑖)],

which implies that 𝑞(𝑥𝑖, 𝑥𝑖−1)+𝑞(𝑥𝑖−1, 𝑥𝑖)=𝜃 by (3) and (𝜈1+𝜈4+𝜈5)(𝑥𝑖) ⪯
⪯ (𝜈1 +𝜈2 +𝜈3 +2𝜈4 +2𝜈5)(𝑥𝑖). Hence, 𝑞(𝑥𝑖, 𝑥𝑖−1) = 𝑞(𝑥𝑖−1, 𝑥𝑖) = 𝜃. Thus,
by Lemma 1 (i) and since 𝑞(𝑥𝑖, 𝑥𝑖)=𝜃 and 𝑞(𝑥𝑖, 𝑥𝑖−1)=𝜃, we have 𝑥𝑖 = 𝑥𝑖−1

for 𝑖 = 1, 2, . . . , 𝑁 ; that is, 𝑧 = 𝑥0 = 𝑥1 = · · · = 𝑥𝑁−1 = 𝑥𝑁 = 𝑧*.
Therefore, the fixed point of 𝑇 is unique and the restriction of 𝑇 to 𝑋𝑇 is
a Picard operator. This completes the proof. �

Example. Let 𝑋=[0, 1], 𝐸 = 𝐶1
R[0, 1] with the norm ‖𝜓‖=‖𝜓‖∞+‖𝜓′‖∞,

𝑃 = {𝜓 ∈ 𝐸 : 𝜓(𝑡) > 0 on [0, 1]} be a non-normal cone. Consider the
mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 introduced by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| · 𝜓(𝑡) for all
𝑥, 𝑦 ∈ 𝑋, where 𝜓(𝑡) = 𝑒𝑡 ∈ 𝑃 ⊂ 𝐸 with 𝑡 ∈ [0, 1]. Then (𝑋, 𝑑) is a
cone metric space with a solid cone. Define the mapping 𝑞 : 𝑋 ×𝑋 → 𝐸
by 𝑞(𝑥, 𝑦)(𝑡) = 𝑦 · 𝑒𝑡 for all 𝑥, 𝑦 ∈ 𝑋, where 𝑡 ∈ [0,1]. Then 𝑞 is a 𝑐-
distance. Define 𝑇 : 𝑋 → 𝑋 by 𝑇 (𝑥) = 𝑥2

4
, if 𝑥 ̸= 1

2
, and 𝑇𝑥 = 0, if

𝑥 = 1
2
. Clearly, 𝑇 is not continuous at 𝑥 = 1

2
, and, so, on the whole

𝑋. Suppose that 𝑋 is endowed with a graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), where
𝑉 (𝐺) = 𝑋 and 𝐸(𝐺) = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋} ∪ {(0, 1

2
), (1

2
, 0)}. Now, 𝑇 is

orbitally 𝐺-continuous on 𝑋. Consider mappings 𝜈1(𝑥) = 𝑥+1
4
, 𝜈2(𝑥) = 𝑥

4

and 𝜈3(𝑥) = 𝜈4(𝑥) = 𝜈5(𝑥) = 0 for all 𝑥 ∈ 𝑋. Then

(i) if 𝑥 ̸= 1
2
, then 𝜈1(𝑇𝑥) = 𝜈1(

𝑥2

4
) =

𝑥2

4
+1

4
6 𝑥+1

4
= 𝜈1(𝑥) and if 𝑥 = 1

2
,

then 𝜈1(𝑇 1
2
) = 1

4
6 3

8
= 𝜈1(

1
2
);

(ii) if 𝑥 ̸= 1
2
, then 𝜈2(𝑇𝑥) = 𝜈2(

𝑥2

4
) = 𝑥2

16
6 𝑥

4
= 𝜈2(𝑥) and if 𝑥 = 1

2
, then

𝜈2(𝑇
1
2
) = 0 6 1

8
= 𝜈2(

1
2
);

(iii) 𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and 𝑖 = 3, 4, 5;

(iv) (𝜈1 + 𝜈2 + 𝜈3 + 2𝜈4 + 2𝜈5)(𝑥) = 𝑥+1
4

+ 𝑥
4
< 1 for all 𝑥 ∈ 𝑋;

(v) let 𝑥 ∈ 𝑋 with (𝑥, 𝑥) ∈ 𝐸(𝐺). Then, in two cases 𝑥 = 1
2
and 𝑥 ̸= 1

2
,

both relations (1) and (2) are true;

(vi) since (0, 𝑇0) = (0, 0) ∈ 𝐸(𝐺), we have 𝑋𝑇 ̸= ∅.

Thus, all the conditions of Theorem 1 are true. Clearly, 𝑇 has a unique
fixed point 𝑥 = 0 ∈ [0, 1] and 𝑞(0, 0) = 0.
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Now, several consequences of our main result follow for particular
choices of the graph 𝐺. Firstly, consider a cone metric space (𝑋,𝑑) en-
dowed with the complete graph 𝐺0, whose vertex set coincides with 𝑋;
that is, 𝑉 (𝐺0) = 𝑋 and 𝐸(𝐺0) = 𝑋 × 𝑋. Let 𝐺 = 𝐺0 in Theorem 1.
Then it is clear that the set 𝑋𝑇 related to any self-map 𝑇 on 𝑋 coincides
with the whole set 𝑋. Thus, we have the following corollary.

Corollary 1. Let (𝑋, 𝑑) be a complete cone metric space endowed with
the graph 𝐺0, 𝑞 be a 𝑐-distance and 𝑇 : 𝑋 → 𝑋 be a orbitally 𝐺0-
continuous mapping. Suppose that there exist mappings 𝜈𝑖 : 𝑋 → [0, 1)
with 𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and for 𝑖 = 1, 2, . . . , 5, such that
relations (1) – (3) hold for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a fixed point.

Now, let (𝑋, ⊑) be a poset (partially ordered set) and 𝐺1 be the graph
with 𝑉 (𝐺1) = 𝑋 and 𝐸(𝐺1) =

{︀
(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ⊑ 𝑦

}︀
. Since ⊑ is

reflexive, 𝐸(𝐺1) contains all loops. By putting 𝐺 = 𝐺1 in Theorem 1, we
obtain the following corollary of our main theorem.

Corollary 2. Let (𝑋, ⊑) be a poset, (𝑋,𝑑) be a complete cone metric
space, 𝑞 be a 𝑐-distance, and 𝑇 : 𝑋 → 𝑋 be a nondecreasing and orbitally
𝐺1-continuous mapping on 𝑋. Suppose that there exist mappings 𝜈𝑖 :
𝑋 → [0, 1) with 𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and for 𝑖 = 1, 2, . . . , 5, such
that relations (1) – (3) hold for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⊑ 𝑦. Then 𝑇 has a
fixed point if and only if there exist 𝑥0 ∈ 𝑋 such that 𝑥0 ⊑ 𝑇𝑥0. Further,
if 𝑇𝑧 = 𝑧, then 𝑞(𝑧, 𝑧) = 𝜃.

Now, let 𝑋 be a poset endowed with the graph 𝐺2 given by 𝑉 (𝐺2) = 𝑋
and 𝐸(𝐺2) =

{︀
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑥 ⊑ 𝑦 ∨ 𝑦 ⊑ 𝑥

}︀
; that is, an ordered pair

(𝑥, 𝑦) ∈ 𝑋 × 𝑋 is an edge of 𝐺2 if and only if 𝑥 and 𝑦 are comparable
elements of (𝑋,⊑). Consider 𝐺 = 𝐺2 in Theorem 1. Then we have
another fixed point corollary as follows.

Corollary 3. Let (𝑋,⊑) be a poset, (𝑋, 𝑑) be a complete cone metric
space, 𝑞 be a 𝑐-distance, and 𝑇 : 𝑋 → 𝑋 be a nondecreasing and orbitally
𝐺2-continuous mapping that maps comparable elements of 𝑋 onto com-
parable elements. Suppose that there exist mappings 𝜈𝑖 : 𝑋 → [0, 1) with
𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and for 𝑖 = 1, 2, . . . , 5, such that relations
(1) – (3) hold for all comparable 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a fixed point on 𝑋
if and only if there exist 𝑥0 ∈ 𝑋 such that 𝑥0 and 𝑇𝑥0 are comparable.
Moreover, if 𝑇𝑧 = 𝑧, then 𝑞(𝑧, 𝑧) = 𝜃.

Let 𝜀 ∈ int𝑃 be fixed. Two elements 𝑥, 𝑦 ∈ 𝑋 are said to be 𝜀-closed
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if 𝑑(𝑥,𝑦) ≺ 𝜀. Consider the 𝜀-graph 𝐺3 with 𝑉 (𝐺3) = 𝑋 and 𝐸(𝐺3) =
= {(𝑥, 𝑦) ∈ 𝑋×𝑋 : 𝑑(𝑥, 𝑦) ≺ 𝜀}. Note that 𝐸(𝐺3) contains all loops. Set
𝐺 = 𝐺3 in Theorem 1. Then we have the following result.

Corollary 4. Let (𝑋, 𝑑) be a complete cone metric space endowed with
the graph 𝐺3, 𝜀 ∈ int𝑃 , 𝑞 be a 𝑐-distance, and 𝑇 : 𝑋 → 𝑋 be a or-
bitally 𝐺3-continuous mapping that maps 𝜀-close elements of 𝑋 onto 𝜀-
close elements. Suppose that there exist mappings 𝜈𝑖 : 𝑋 → [0, 1) with
𝜈𝑖(𝑇𝑥) 6 𝜈𝑖(𝑥) for all 𝑥 ∈ 𝑋 and for 𝑖 = 1, 2, . . . , 5, such that relations
(1) – (3) hold for all 𝑥,𝑦 ∈ 𝑋 such that 𝑥 and 𝑦 are 𝜀-close elements. Then
𝑇 has a fixed point on 𝑋 if and only if there exists 𝑥0 ∈ 𝑋 such that 𝑥0
and 𝑇𝑥0 are 𝜀-close. Moreover, if 𝑇𝑧 = 𝑧, then 𝑞(𝑧, 𝑧) = 𝜃.

Remark 1. In Theorem 1 and its corollaries, consider 𝜈𝑖(𝑥) = 𝜈𝑖 for
𝑖 = 1, 2, . . . , 5. Then we can obtain the same assertions. Also, for Banach-
type fixed point result with respect to a 𝑐-distance on cone metric spaces
endowed with a graph, we apply the condition 𝑞(𝑇𝑥, 𝑇𝑦) ⪯ 𝛼𝑞(𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝑋, where 𝛼 ∈ [0, 1).

3. Application to a fourth-order differential equation. In this
section, the existence of solution of a fourth-order boundary-value problem
by applying Green’s functions is established as a consequence of Corol-
lary 2. Specially, we study the fourth-order two-point boundary value
problem {︃

𝑥𝑖𝑣(𝑡) = 𝑘(𝑡, 𝑥(𝑡)), 0 < 𝑡 < 1,

𝑥(0) = 𝑥′(0) = 𝑥′′(1) = 𝑥′′′(1) = 0,
(10)

with 𝑘 ∈ 𝐶([0, 1]×R,R). Note that the problem (10) may be equivalently
expressed in the integral form: find the solution 𝑥* ∈ 𝑋 of

𝑥(𝑡) =

1∫︁
0

𝐺(𝑡,𝜏)𝑘(𝜏,𝑥(𝜏)) 𝑑𝜏, 𝑡 ∈ [0, 1], (11)

where the Green function 𝐺(𝑡, 𝜏) is given by{︃
𝐺(𝑡, 𝜏) = 1

6
𝜏 2(3𝑡− 𝜏), 0 6 𝜏 6 𝑡 6 1,

𝑡2(3𝜏 − 𝑡), 0 6 𝑡 6 𝜏 6 1.

and
0 6 𝐺(𝑡, 𝜏) 6

1

2
𝑡2𝜏, ∀𝑡, 𝜏 ∈ [0, 1]. (12)
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Let us review the mathematical background (see [10], [16]). Let 𝑋 =
= 𝐶([0, 1],R) be the set of all non-negative real-valued continuous func-
tions on the interval [0, 1], and let this set be endowed with the norm
‖𝑥‖ = ‖𝑥‖∞ + ‖𝑥′‖∞, where ‖𝑥‖∞ = sup𝑡∈[0,1] |𝑥(𝑡)|. Also, let 𝐸 =
= 𝐶1([0, 1],R) and 𝑃 = {𝑥 ∈ 𝐸 : 𝑥(𝑡) > 0 for all 𝑡 ∈ [0, 1]}. Define
a mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 by 𝑑(𝑥, 𝑦) = 𝑒𝑣 sup𝑡∈[0,1] |𝑥(𝑡) − 𝑦(𝑡)| for
all 𝑥, 𝑦 ∈ 𝑋 and 𝑣 ∈ [0, 1]. Also, consider the partial order 𝑥 ⊑ 𝑦 iff
𝑥(𝑡) 6 𝑦(𝑡) for all 𝑡 ∈ [0, 1]. Evidently, (𝑋,⊑) is a partially ordered
set and (𝑋, 𝑑) is a complete cone metric space. Further, consider the
𝑐-distance 𝑞 : 𝑋 × 𝑋 → 𝐸 given by 𝑞(𝑥, 𝑦) = 𝑒𝑣 sup𝑡∈[0,1] |𝑦(𝑡)| for all
𝑥, 𝑦 ∈ 𝑋 and 𝑣 ∈ [0, 1]. Moreover, we use the following assumptions:

(I) There exists 𝛼 : 𝑋 → [0, 1) such that

0 6 𝑘(𝑡, 𝑦(𝑡)) 6 4𝛼(𝑥)𝑞(𝑥, 𝑦)𝑒−𝑣, (13)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⊑ 𝑦 and for all 𝑡 ∈ [0, 1] and

𝛼

(︂ 1∫︁
0

𝐺(𝑡, 𝜏)𝑘(𝜏, 𝑥(𝜏)) 𝑑𝜏

)︂
6 𝛼(𝑥) ∀𝑥 ∈ 𝑋. (14)

(II) There exists 𝑥0 ∈ 𝑋 such that 𝑥0(𝑡) 6
1∫︀
0

𝐺(𝑡,𝜏)𝑘(𝜏, 𝑥0(𝜏)) 𝑑𝜏 for all

𝑡 ∈ [0, 1]; so, the integral equation (11) admits a lower solution in 𝑋.

Suppose that the function 𝑘 ∈ 𝐶([0, 1] × R,R) satisfies assumptions (I)
and (II). Now, we prove the existence of at least one solution of (10) in
𝑋. This problem is equivalent to the fixed-point problem obtained by
introducing the continuous integral operator 𝑇 : 𝑋 → 𝑋 given as

(𝑇𝑥)(𝑡) =

1∫︁
0

𝐺(𝑡,𝜏)𝑘(𝜏,𝑥(𝜏)) 𝑑𝜏, 𝑡 ∈ [0,1], 𝑥 ∈ 𝑋.

Now, we prove that the operator 𝑇 satisfies all the conditions in
Corollary 1. Consequently, there exists a fixed point of 𝑇 in 𝑋. Since
𝑘 ∈ 𝐶([0, 1] × R,R) is nondecreasing, we conclude that 𝑇 is a nondecrea-
sing mapping with respect to ⊑. Also, by using (12) and (13), we obtain

𝑞(𝑇𝑥, 𝑇𝑦) = 𝑒𝑣 sup
𝑡∈[0,1]

1∫︁
0

𝐺(𝑡, 𝑡𝑎𝑢)𝑘(𝜏, 𝑦(𝜏)) 𝑑𝜏 6 𝛼(𝑥)𝑞(𝑥, 𝑦)

for all 𝑡 ∈ [0, 1] and for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⊑ 𝑦. By assumption (II), there
exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⊑ 𝑇𝑥0. Also, from (14) and since 𝛼 assumes
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values in the interval [0, 1), we have 𝛼(𝑇𝑥) 6 𝛼(𝑥) < 1 for all 𝑥 ∈ 𝑋.
Thus, all the conditions of Corollary 2 with 𝜈1(𝑥) = 𝛼(𝑥) and 𝜈𝑖(𝑥) = 0
for 𝑖 = 2, 3, 4, 5 hold true. Hence, we deduce the existence of a fixed point
of 𝑇 ; that is, there exists a solution of problem (10) in 𝑋.

4. Conclusion. In this paper, we have considered the condition of
orbitally 𝐺-continuity of mappings instead of the condition of continuity
of mappings and cone metric spaces endowed with graph instead of cone
metric spaces; some theorems of existing literature, such as Kada et al.
[11], Cho et al. [3], Fallahi et al. [4], Fallahi and Soleimani Rad [5], Petrusel
and Rus [13], Rahimi and Soleimani Rad [15], [16], and Wang and Guo [17]
can be unified there. We finish this paper with some questions:

Question 1. Can one obtain these results by considering nother con-
dition instead of continuity of the mapping 𝑇?

Question 2. Can one prove the main theorem and its corollaries by
considering one contractive-type relation instead of two contractive-type
relations?
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