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Abstract. We study questions of existence and belonging to the
given functional class of solutions of the Laplace-Beltrami equa-
tions on a noncompact Riemannian manifoldM with no boundary.
In the present work we suggest the concept of φ-equivalency in the
class of continuous functions and establish some interrelation be-
tween problems of existence of solutions of the Laplace-Beltrami
equations on M and off some compact B ⊂ M with the same
growth "at infinity". A new conception of φ-equivalence classes of
functions onM develops and generalizes the concept of equivalence
of function onM and allows us to more accurately estimate the rate
of convergence of the solution to boundary conditions.
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1. Introduction. This article is devoted to the investigation of the
behavior of harmonic function in relation to the geometry of the manifold
in question. Such problems originate in the classification theory of non-
compact Riemannian surfaces and manifolds (see [15]). For a noncompact
Riemann surface, the well-known problem of conformal type identification
can be stated as follows: does a nontrivial positive superharmonic func-
tion exist on this surface? Exactly this property served as a basis for the
extension of the parabolicity notion for arbitrary Riemannian manifolds.
Namely, manifolds on which any lower-bounded superharmonic function
is constant are called parabolic manifolds. In the paper [4] it is shown that
parabolicity of the type of a complete Riemannian manifold is equivalent
to the fact that the capacity of any compact set is zero. Moreover, the
capacitive technique has shown high efficiency in studying the behavior of
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solutions of elliptic equations and inequalities on noncompact Riemannian
manifolds (see [4–7,11]).

Many questions of this kind fit into the pattern of a Liouville-type the-
orem saying that the space of bounded solutions of some elliptic equation
is trivial.

In works of a number of the authors the conditions ensuring the va-
lidity of the Liouville property on noncompact Riemannian manifolds are
adduced in terms of volume growth, or isoperimetric inequalities, and so
on (see [4–6,10,14]). However, the class of manifolds admitting nontrivial
solutions of some elliptic equations is wide. For example, conditions en-
suring the solvability of the Dirichlet problem with continuous boundary
conditions "at infinity" for several noncompact manifolds has been found
in many papers (see, e. g., [1, 10, 14]). In particular, similar questions for
bounded harmonic functions were studied in papers [2, 13,16]).

Notice that even the formulation of boundary-value problems for el-
liptic differential equations (in particular, the Dirichlet problem) on non-
compact Riemannian manifolds and in unbounded domains of that man-
ifolds can be problematic, since it is unclear how we should interpret the
boundary data. Geometric compactification enables us sometimes to de-
fine them analogously the classical statement of the Dirichlet problem in
bounded domains of Rn (see, e. g., [1, 10,14]).

In [12] the author suggested a new approach to the statement of boun-
dary value problems for elliptic differential equation on noncompact Rie-
mannian manifolds, which is based on the consideration of equivalence
classes of bounded continuous functions on M .

Namely, letM be an arbitrary smooth connected noncompact Rieman-
nian manifold without boundary and let {Bk}∞k=1 be an exhaustion of M ,
i. e., a sequence of precompact open subsets of M such that Bk ⊂ Bk+1

and M = ∪∞k=1Bk. Throughout the sequel, we assume that boundaries
∂Bk are C1-smooth submanifolds.

The continuous functions f1 and f2 are equivalent on M and write
f1 ∼ f2 if for some exhaustion {Bk}∞k=1 of M we have

lim
k→∞

sup
M\Bk

|f1 − f2| = 0.

Using this approach has been established the interrelation between the
solvability of boundary value problems and solvability of exterior boundary
problems for the stationary Schrödinger equation on noncompact Rieman-
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nian manifold (see e. g. [12]). A similar result for inhomogeneous elliptic
equations was obtained in [11].

This equivalence relation characterizes the asymptotic behavior of so-
lutions of elliptic equations at infinity and ensures that the solution con-
verges to boundary conditions in a uniform norm.

This approach has been developed in a number of works. In particular,
the concept of weak equivalence of solutions of elliptic equations was in-
troduced in [8,9], and an estimate was obtained of the rate of convergence
of solutions to boundary conditions using the capacitive potential.

In this article we study questions of existence and belonging to given
functional class of solutions of the Laplace-Beltrami equation

∆u = 0, (1)

on a noncompact Riemannian manifold M with no boundary.
In our research developing the approach described above, we introduce

a new conception of φ-equivalence classes of functions on M . This con-
cept generalizes the concept of weak equivalence and allows us to more
accurately estimate the rate of convergence of the solution to boundary
conditions.

Let B ⊂ M be an arbitrary connected compact subset and the boun-
dary of B be a C1-smooth submanifold. Assume that the interior of B is
non-empty and B ⊂ Bk for all k.

Let φ > 0 be continuous function on M such that

lim
k→∞
‖φ‖C(M\Bk) = 0,

where ‖φ‖C(G) = supG |φ(x)|.
Let f1 and f2 be arbitrary bounded continuous functions on M .

Definition 1. Say that f1 and f2 are φ-equivalent on M and write f1
φ∼ f2

if for some constant C > 0 and for all x ∈M \B we have

|f1(x)− f2(x)| 6 Cφ(x).

It is easy to verify that the relation ”
φ∼ ” is an equivalence and so par-

titions the set of all bounded continuous functions on M into equivalence
classes. Denote the φ-equivalence class of a function f by [f ]φ.

It is clear that if f1
φ∼ f2 then f1 ∼ f2. More importantly we have

φ ∼ 0. The concept of φ-equivalence establishes not only inclusion into
the class but also determines approach rate of function f1 and f2.
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Definition 2. We say that on M the boundary-value problem for equa-
tion (1) is solvable with boundary data from the class [f ]φ, if there is a
harmonic function u(x) on M such that u ∈ [f ]φ.

Definition 3. Let Φ(x) ∈ C(∂B) be any function continuous on ∂B. We
say that on M \B the boundary-value problem for equation (1) is solvable
with boundary data (Φ, [f ]φ) if there is a harmonic function u(x) on M \B
such that u ∈ [f ]φ and u|∂B = Φ|∂B.

Definition 4. We call a function w φ-asymptotically nonnegative on M
if there exists a continuous and bounded on M function f > 0 such that
w

φ∼ f .

Let us formulate the main results.
Theorem 1. Suppose that for every constant A there is a harmonic
function v(x) on M \B such that v ∈ [f ]φ and v|∂B = A. Then there is a
harmonic function u(x) on M such that u ∈ [f ]φ.

Theorem 2. Suppose that there is a harmonic function u(x) on M such
that u ∈ [f ]φ. Then for any continuous function Φ on ∂B there is a
harmonic function v(x) on M \B such that v ∈ [f ]φ and v|∂B = Φ.

Theorem 3. On M \B, for any continuous function Φ(x) ∈ C(∂B), the
boundary-value problem for equation (1) is solvable with boundary data
(Φ, [f ]φ) if and only if on M the boundary-value problem for equation (1)
with boundary data from the class [f ]φ is solvable too.

Remark 1. The connections between solvability of boundary-value and
exterior boundary-value problems for linear and quasilinear elliptic equa-
tions in terms of equivalent functions is investigated in detail, for example,
in [11, 12].

2. The auxiliaries. We formulate and prove some auxiliary asser-
tions. Analogy statements for class of equivalence functions were proved
in [11, 12]. The proof of all results is based on classical propositions of
the theory of equations with partial derivatives: the Maximum Principle,
the Comparison and Uniqueness Theorems for solutions to linear elliptic
differential equations. Their validity on precompact subsets of manifold
M can be shown in just the same way as for bounded domains in Rn

(see [3, pp. 39–40]).

Lemma 1. Suppose that ∆w 6 0 on M\B, w|∂B > 0, and w is φ-
asymptotically nonnegative. Then w > 0 on M\B.
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Proof. Assume that there is a point x∗ ∈ M\B such that w(x∗) < 0.
Since the sequence {Bk}∞k=1 is monotone increasing, we may assume that
x∗ ∈ Bk\B for all k. Since w is φ-asymptotically nonnegative, there is a
function f > 0 such that |w − f | 6 Cφ(x) for all x ∈ M \ B and some
constant C > 0. Here is lim

k→∞
‖φ‖C(M\Bk) = 0. Then, for every ε > 0 there

is K = K(ε) such that sup
M\Bk

|φ| < ε for all k > K(ε) and so |φ| < ε on

∂Bk.

Take ε = |w(x∗)|
C

. Then for k > K(ε) we have the following inequality

|w(x)− f(x)| 6 Cφ(x) <
|w(x∗)|
C

· C < |w(x∗)|

for x ∈ ∂Bk.

Hence, w(x) > f(x) − |w(x∗)| > −|w(x∗)| = w(x∗) for all x ∈ ∂Bk.
Moreover, from the condition w|∂B > 0 we find that w(x) > w(x∗) for all
x ∈ ∂B.

Furthermore, the function w(x), being continuous on the compact
set BK\B attains its minimal value, where K = K(ε). Suppose that
w(x∗∗) = min

BK\B
w(x). Moreover, we find that w(x∗∗) 6 w(x∗) < 0 and

x∗∗ ∈ BK\B. Such x∗∗ is an interior point of the minimum of harmonic
function w(x) in the domain BK\B. Hence, the harmonic function w(x) is
a constant. What is more, we have w(x) > 0 since w|∂B > 0. This result
contradicts our assumption above. The proof of the lemma is over. �

Lemma 2. Suppose that ∆w 6 0 on M and w is φ-asymptotically
nonnegative. Then w > 0 on M .

Proof. Firstly, let w be constant. Then, clearly, we have w > 0 on M .
Further, let w 6≡ const and there be a point x∗ ∈ M\B such that

w(x∗) < 0. Since the sequence {Bk}∞k=1 is monotone increasing, we may
assume that x∗ ∈ Bk for all k. Since w is φ-asymptotically nonnegative,
there is a function f > 0 such that |w− f | 6 Cφ(x) for all x ∈M \B and
some constant C > 0, where lim

k→∞
||φ||C(M\Bk) = 0.

Repeating the arguments similar to Lemma 1, we conclude that BK

has an interior point of minimum of the harmonic function w(x), where
K = K(ε) and BK is defined as in the Lemma 1. Hence, the harmonic
function w(x) is a constant. Besides, we have w(x) ≡ w(x∗) < 0, which
contradicts our assumption above. The proof of the lemma is over. �
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Lemmas 1 and 2 readily imply the fulfillment of the Comparison Prin-
ciple and so the Uniqueness Theorem for solutions to boundary value and
exterior boundary problems for equation (1) with boundary data in the
class [f ]φ.

Corollary 1. (Comparison Principle) Suppose that ∆w 6 ∆u on M\B,
w|∂B > u|∂B and w φ∼ u. Then w > u on M\B.

Suppose that ∆w 6 ∆u on M and w φ∼ u. Then w > u on M .

Corollary 2. (Uniqueness Theorem) Let ∆w = ∆u on M\B, w|∂B =

= u|∂B and w φ∼ u, then w = u on M\B. Let ∆w = ∆u on M and w φ∼ u,
then w = u on M .

3. The proof of the main results.

Theorem 1. Suppose that for every constant A there is a harmonic
function v(x) on M \B such that v ∈ [f ]φ and v|∂B = A. Then there is a
harmonic function u(x) on M such that u ∈ [f ]φ.

Proof. Let u0 be a harmonic function on M \ B such that u0 ∈ [f ]φ and
u0|∂B = 0. It is clear that u0 is a bounded function on M \B.

Consider the sequence of functions uk that are solutions of the problems{
∆uk = 0 in Bk,

uk |∂Bk
= u0|∂Bk

.

By the maximum principle, we have for all k

|uk| 6 max
Bk

|uk| = max
∂Bk

|uk| = max
∂Bk

|u0| 6 max
M\B
|u0|,

which implies the uniform boundedness of the family of functions {uk}∞k=1

onM . From the uniform boundedness of the family of harmonic functions,
we obtain the existence of the limit harmonic function u = lim

k→∞
uk on M .

Next, we will show that u ∈ [f ]φ.
Since ∂B is a compact subset, there exists A = max∂B |u| and we have

−A 6 u|∂B 6 A

and also
−(A+ 1) 6 uk|∂B 6 A+ 1
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for sufficiently large values k.
Since u0|∂B = 0, it follows that −(A + 1) 6 u0|∂B 6 A + 1 and

−(A + 1) 6 uk|∂B 6 A + 1 for k large enough. Under the assumption of
the theorem, there is a harmonic function u(x) ∈ [f ]φ and u(x) ∈ [f ]φ on
M\B such that

u|∂B = −(A+ 1), u|∂B = A+ 1.

Hence, we find that

u|∂B 6 u0|∂B = 0 6 u|∂B.

Moreover, we have ∆u = ∆u = ∆u on M\B and u
φ∼ u0

φ∼ u. Then,
applying the Corollary 1 (Comparison Principle) we get u 6 u0 6 u on
M\B. The last inequality implies that next relations are true:

u|∂Bk
6 uk |∂Bk

= u0|∂Bk
6 u|∂Bk

, u|∂B 6 uk |∂B 6 u|∂B.

Further, we use the comparison principle to the harmonic functions uk
on Bk\B for k large enough and get u 6 uk 6 u. Passing to the limit
as k → ∞ on M\B, we obtain u 6 u 6 u. Since u φ∼ u, we arrive
at the equivalence u φ∼ u0. So u ∈ [f ]φ, which completes the proof of
Theorem 1. �

Theorem 2. Suppose that there is a harmonic function u(x) on M
such that u ∈ [f ]φ. Then for any continuous function Φ on ∂B there is a
harmonic function v(x) on M \B such that v ∈ [f ]φ and v|∂B = Φ.

Proof. We first prove that for every continuous function Φ on ∂B there
is a harmonic fuction w on M \ B such that w|∂B = Φ and w ∈ [0]φ.
Consider the sequence of harmonic functions wk that are solutions to the
boundary value problems:

∆wk = 0 in Bk \B,
wk|∂B = Φ,

wk|∂Bk
= φ.

By the maximum principle, for every k we have

|wk| 6 max
∂(Bk\B)

|wk| 6 max
∂B
|Φ|+ max

∂Bk

|φ| 6 max
∂B
|Φ|+ sup

M\B
|φ|,
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i. e., the sequence {wk}∞k=1 is uniformly bounded on M \B and so there is
the limit harmonic function w(x) = lim

k→∞
wk. It is clear that w|∂B = Φ.

We will show that w ∈ [0]φ, i. e., for all x ∈M \B we have

|w(x)| 6 Cφ(x)

for some constant C > 0.
Consider the sequence of harmonic functions wk and show that

|wk(x)| 6 Cφ(x) (2)

for all x ∈ Bk \B and for some constant C > 0.
Suppose that x ∈ ∂Bk; then wk(x) = φ(x) and so the inequality (2) is

true for any constant C > 1.
Further, suppose that x ∈ ∂B; then wk(x) = Φ(x) and so |wk(x)| =

= |Φ(x)| 6 Cφ(x), where C = A1/A2. The constants A1 = max∂B |Φ(x)|
and A2 = min∂B φ(x) exist, since Φ(x) ∈ C(∂B) and φ(x) ∈ C(∂B).
Put C = max{1, A1/A2}. By the maximum principle, for every k we have
inequality (2) in the whole set Bk \B.

Taking the limit in (2) as k → ∞, we obtain |w(x)| 6 Cφ(x) for all
x ∈M \B. Hence, we have w ∈ [0]φ.

Now, let u ∈ [f ]φ be a harmonic function on M and Φ be an arbitrary
continuous function on ∂B. Consider the continuous function Φ∗ = u−Φ
on ∂B. As shown above, there is a harmonic function w on M \ B such
that w|∂B = Φ∗ and w ∈ [0]φ. Then the function v = u − w is a sought
harmonic function on M \B such that v ∈ [f ]φ and v|∂B = Φ. �

The following theorem is a direct consequence of the previous results.

Theorem 3. On M \ B for any continues function Φ(x) ∈ C(∂B) the
boundary-value problem for equation (1) is solvable with boundary data
(Φ,[f ]φ) if and only if on M the boundary-value problem for equation (1)
with boundary data from the class [f ]φ is solvable too.
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