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THE JACOBIAN CONJECTURE: STRUCTURE OF
KELLER MAPPINGS

Abstract. The Jacobian conjecture was first formulated by
O. N. Keller in 1939. In the modern form it supposes injectiv-
ity of the polynomial mapping f : Rn → Rn (Cn → Cn) under the
assumption that Jf ≡ const 6= 0. In this paper, we consider the
structure of polynomial mappings f with Jf ≡ const 6= 0.
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1. Introduction. Let Pm denote the set of all polynomials in Rn (or
Cn) of degree at most m. Let Pm be the set of all polynomial mappings
F = (F1, . . . ,Fn) : Rn → Rn (or Cn → Cn), Fk ∈ Pm(k = 1, . . . ,n) degree
degFk 6 m. Denote the Jacobi matrix and the Jacobian of a mapping
F by DF and JF , respectively (in the complex case, DF and JF are
complex). The Jacobian conjecture, formulated by Keller [3] in 1939, in
the modern terms reads:

if F ∈ Pm and JF ≡ const 6= 0, then F is injective in Rn (Cn).
Proof of the conjecture would allow to apply it widely in a number of

branches of mathematics (e. g., [1], [4]). The conjecture is included in the
list “Mathematical Problems for the Next Century” [7].

A significant amount of scientific publications have been devoted to
this conjecture: see, e. g., [2]. In particular, it is proved for F ∈ P2 for any
n in [10], checked for n = 2 and F ∈ P100 in [5]. However, up to date JC
has been neither proved nor rejected for any n.

It is important to describe subsets of such mappings from Pm, that
JF ≡ 1, DF (0) = I (identity matrix), F (0) = 0. Such mappings are called
Keller mappings; it is sufficient to prove JC only for such mappings.

In this paper, we consider the structure of Keller mappings; this ques-
tion seems to be among the most important for both proving or rejecting
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the JC. Solving this question and applying the criteria or sufficient con-
ditions of injectivity would, we believe, significantly advance the study of
JC.

The complete description of the Keller mappings for n = 2, m = 3 is
given in [8].

Theorem A. [8] Let F be a flat polynomial mapping from P3, F (0) = 0; it
is a Keller mappings if and only if F = A−1 ◦ g ◦ A, where
g(x, y) = (U(x, y), V (x, y)),

U(x, y) = x+ α2(x+ y)2 + α3(x+ y)3,

V (x, y) = y − α2(x+ y)2 − α3(x+ y)3,

α2 and α3 are any fixed constants, A is a linear homogeneous non-degene-
rate mapping. All such mappings F are injective.

The set of Keller mappings for m > 3 is significantly more complicated
(see [9]). A similar to Theorem A result was obtained in [6] as a sufficient
condition for any n and m.

Theorem B. [6] The Jacobian conjecture is true for polynomial mappings
F (X) = (A ◦ f ◦ A−1)(X), where X = (x1, . . . , xn) ∈ Rn, where A is a
linear homogeneous non-degenerate mapping, f = (u1, . . . ,un),

uk(X) = xk + γk[α2(x1 + . . .+ xn)2+

+ α3(x1 + . . .+ xn)3 + . . .+ αm(x1 + . . .+ xn)m],

αj, γk ∈ R with
n∑

k=1

γk = 0 for k = 1, . . . , n. Then F (X) is a Keller

mapping.
Theorem B can be significantly generalized:

Theorem C. [6] Let n > 2 and mapping f(X) = (U1, . . . ,Un) : Rn → Rn

be defined as:

Uk(X) = xk+pk2(x1+. . .+xn)2+. . .+pkm(x1+. . .+xn)m = xk+vk(z), (1)

where z = x1 + . . . + xn; vk(z) =
m∑
j=2

pkjz
j, k = 1, . . . , n and pkj are any

constant values that follow the condition
n∑

k=1

pkj = 0 for all j = 2, . . . ,m.

Then JC is true for f and f = f1 ◦ · · · ◦ fN , where fl (l = 1, . . . , N) are
polynomial mappings of type f from Theorem B.
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The authors of [8] and [6] note that these results remain true also in
the complex case.

In connection with Theorem C, there appears
Question 1: whether Theorem C remains true if the sum z = x1 +

+ . . . + xn is replaced by Z = b1x1 + . . . + bnxn with an arbitrary vector
B = (b1, . . . , bn), B ∦ (1, . . . , 1) in definition (1) of functions vk(z)? Here
it is natural to assume that B ∦ (1, 1, . . . , 1) =: E, in order not to get
mappings of type (1), already described by Theorem C. So this is assumed
in the sequel. Also, for the same reason, we assume that B 6= 0.

This problem is solved by choosing for each mapping f from Theorem C
a non-degenerate matrix A, such that the new mapping
Φ(X) = A−1f(AX) has the desired properties. It turns out, that such
a matrix does not always exist. The following theorem holds:

Theorem 1. Let k = 1, . . . , n and P (k) = (pk2, . . . , pkm) be (m−1)-di-

mensional vectors, not all null, m > 2,
n∑

k=1

P (k) = 0. Let Rn 3 B =

= (b1, . . . , bn) ∦ (1, . . . ,1), f(X) be from Theorem C is defined using con-
dition (1) by choosing vectors P (k).

1) Assume that in the set of vectors P (k), k = 1, . . . , n at most n − 2
are linearly independent; then a non-degenerate matrix A, such that

Φ(X) = A−1f(AX) = X +

q12Z
2 + . . .+ q1mZ

m

. . . . . . . . . . . . . . . . . . . .
qn2Z

2 + . . .+ qnmZ
m

 (2)

exists; here
n∑

k=1

qkj = 0 for any j = 2, . . . ,m, and Z = (X,B) denotes the

Euclidean scalar product of vectors X and B.

2) Assume that in the set of vectors P (k), k = 1, . . . , n, at least (n− 1)
are linearly independent; then no matrix A satisfies equalities (2) and
n∑

k=1

qkj = 0 for any j = 2, . . . ,m.

Note that if the condition
n∑

k=1

pkj = 0, j = 2, . . . ,m, is not satisfied in

Theorem C, the mapping f defined by formula (1) would not generally be
a Keller mapping and JC would not be true. In this connection, there
appears the
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Question 2: in Theorem 1, how important is the condition
n∑

k=1

qkj = 0

for polynomial mappings

Φ(X) = X +
m∑
l=2

QlZ
l, where Ql =

q1l
...
qnl

 , Z = (X,B), (*)

to be Keller mappings?
The answer to this question is the following

Theorem 2. For any vector B = (b1, . . . , bn) and any vectors Qj,
j = 2, . . . ,m from the linear vector space M orthogonal to B, the poly-
nomial mapping Φ(X) from (*) is a Keller mapping, and the JC is valid
for it.

Theorem C is a partial case of Theorem 2 for B = (1, . . . ,1). In
Theorem 2 the assumption that the vectors Qj belong to the space M ,
M⊥B, is essential.

To describe the structure of the Keller mappings, it is important to
study their compositions (see, e. g., [9] and [6]). The third part of this
paper is devoted to this question.

2. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let f be the mapping from Theorem C and a
non-degenerate matrix

A :=

a11 a12 . . . a1n
...

... . . . ...
an1 an2 . . . ann

 , A−1 :=

c11 c12 . . . c1n
...

... . . . ...
cn1 cn2 . . . cnn

 = C.

Denote

Y =

y1
...
yn

 := AX =

a11x1 + a12x2 + . . .+ a1nxn
...

an1x1 + an2x2 + . . .+ annxn

 ,

Z∗ = y1+· · ·+yn, F (X) = f(AX) = f(y1, . . . , yn) = (U1(Y ), . . . , Un(Y )).

From (1) we get
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Uk(Y ) = yk + vk(Z∗) =

= yk+
m∑
j=2

pkj[x1(a11+. . .+an1)+. . .+xn(a1n+. . .+ann)]j, k = 1, . . . , n,

even more,
n∑

k=1

pkj = 0 for all j = 2, 3, . . . ,m. From Theorem C it follows,

that f(X) is a Keller mapping. Therefore, the Jacobian of
Φ(X) = A−1f(AX) is JΦ(X) ≡ 1 and DΦ(0) = I, which means that
Φ is a Keller mapping.

Now denote

a11 + . . .+ an1 = b∗1, . . . , a1n + . . .+ ann = b∗n, B∗ =

b
∗
1
...
b∗n

;

B∗ 6= 0, because detA 6= 0. Let us prove the following statement:
A mapping Φ has the form (2), if and only if a constant c 6= 0 exists,
such that B∗ = Bc.

Indeed, the sufficiency is obvious. Let us check necessity. If there is
no such constant c 6= 0 that B∗ = Bc, equations z = (X,B) = 0 and
Z∗ = (X,B∗) = 0 define different hyperplanes Π1 and Π2, respectively.
Choose a point in X ∈ Π1 \ Π2. For such X, when equality (2) is valid,
we have Φ(X) = X. Choose a λ → +∞. Then Φ(λX) = λX. Not all
pkj are zero, due to assumptions of Theorem 1, so ‖f(AXλ)‖ grows as
λr, where r > 1, as λ → +∞. Therefore, ‖Φ(λX)‖ has the same growth
order λr. The obtained contradiction shows that there exists an X that
violates equality (2). Thus B∗ = Bc for some constant c 6= 0. This means
that Bc = ATE; here E is the column vector (1, 1, . . . ,1). Let us write
the last equality in the form

(AT )−1Bc = CTBc = E. (3)

When condition (3) holds, Z∗ has the form Z∗ = c(XB) = cZ, so

Φ(X) = A−1f(AX) = X + C

v1(Z∗)
...

vn(Z∗)

 =

= X +

v1(Z∗)c11 + . . .+ vn(Z∗)c1n
...

v1(Z∗)cn1 + . . .+ vn(Z∗)cnn

 =
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= X +


Z2

∗

n∑
k=1

pk2c1k + . . .+ Zm
∗

n∑
k=1

pkmc1k

...

Z2
∗

n∑
k=1

pk2cnk + . . .+ Zm
∗

n∑
k=1

pkmcnk

 =

= X +

q
∗
12Z

2
∗ + . . .+ q∗1mZ

m
∗

...
q∗n2Z

2
∗ + . . .+ q∗nmZ

m
∗

 =

= X +

q1,2c
2Z2 + . . .+ q1,mc

mZm

...
qn,2c

2Z2 + . . .+ qn,mc
mZm

 ,

q∗k,j = p1jck1 + p2jck2 + . . .+ pnjckn = cjqkj, (3′)

where k = 1, . . . , n, j = 2, . . . ,m.
In accordance with the problem solved by Theorem 1, the matrix C

we are searching must obey, besides condition (3), also the condition
n∑

k=1

qk,j = 0, i. e.
n∑

k=1

q∗k,j = 0 (4)

for any j = 2, . . . ,m. Therefore,
p12(c11 + . . .+ cn1) + . . .+ pn2(c1n + . . .+ cnn) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p1m(c11 + . . .+ cn1) + . . .+ pnm(c1n + . . .+ cnn) = 0.

(5)

Denote C(k)
+ = c1k + c2k + · · ·+ cnk, k = 1, . . . , n, and rewrite (5) as

P (1)C
(1)
+ + P (2)C

(2)
+ + . . .+ P (n)C

(n)
+ = 0. (6)

By definition of the mapping f ,

P (1) + P (2) + . . .+ P (n) = 0. (7)

Taking this equality into account, rewrite (6) in the form

P (2)(C
(2)
+ − C

(1)
+ ) + . . .+ P (n)(C

(n)
+ − C(1)

+ ) = 0. (8)
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Let us consider two possibilities.
1. There are at least (n − 1) linearly independent vectors among

P (1), . . . , P (n). Without loss of generality we may assume that the vectors
P (2), . . . , P (n) are independent (otherwise just change the numeration).
Then (8) implies

C
(l)
+ − C

(1)
+ = 0 for any l = 2, . . . ,n. (9)

Denote the columns of the matrix C by

Ĉ1 =

c11
...
cn1

 , . . . , Ĉn =

c1n
...
cnn

 .

Equalities (9) mean that vectors (Ĉl − Ĉ1) for l = 2, . . . , n are orthogonal
to the vector E. On the other hand, from (3) it follows that (Ĉl, B) = 1/c

for l = 1, 2, . . . , n. Thus (Ĉl − Ĉ1)⊥B for l = 2, . . . , n. As detC 6= 0, the
vectors {(Ĉl− Ĉ1)}nl=2 are linearly independent and a (n− 1)-dimensional
linear space Mn−1 is spanned on them.

All this implies B⊥Mn−1 and E⊥Mn−1. Therefore, B ‖ E, which
contradicts the assumption about B.

So, in the considered case there is no matrix A that obey conditions
(2) and (4): this proves the second part of the Theorem.

2. One case remains to be considered: when any (n− 1) vectors from
P (k), k = 1, . . . , n, are linearly dependent. Without loss of generality, we
can assume that these are P (2), . . . , P (n). Then there are numbers {λl}nl=2,

at least some of which are non-zero, such that
n∑

l=2

λlP
(l) = 0. For the sake

of definiteness we can assume that λ2 = . . . = λs = 0, but λs+1, . . . , λn 6= 0,
s 6 n−1, because the number of linearly independent vectors in {P (k)}nk=2

is less than or equal to n − 2. Denote the (n − 1)-dimensional linear
subspace Rn orthogonal to the vector E by Kn−1. We noted in the part 1
that the necessary and sufficient condition for the first part of Theorem 1 is
the validity of conditions (3), (3′), and (4). Denote Nn−2 = Kn−1 ∩Mn−1;
the dimension of Nn−2 is (n − 2), because E ∦ B. Choose in Nn−2 any
system of linearly independent vectors D2, . . . , Ds. Then (Dj, E) = λj = 0
and (Dj, B) = 0 for j = 2, . . . , s. Denote the (s − 1)-dimensional linear
space spanned on the vectors D2, . . . , Ds by L(D2, . . . , Ds). We can choose
the vectors Ds+1, . . . , Ds from Mn−1\L(D2, . . . , Ds) so that they, joined
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with the vectors D2, . . . , Ds, form the base in Mn−1; even more, (Dl, E) 6=
0 for l = s+1, . . . , n (maybe, coordinates of these vectors should be slightly
changed for this). Then Dl ⊥ B for any l = 2, . . . , n and (Dj, E) = 0 = λj
for j = 2, . . . , s. Therefore, for any l = s + 1, . . . ,n there is a constant
µl 6= 0 such that (µlDl, E) = λl. Denote D̂l := µlDl for l = s + 1, . . . , n

and D̂l := Dl for l = 2, . . . , s. The vectors D̂2, . . . , D̂s, D̂s+1, . . . , D̂n still
form a base of the space Mn−1. Even more, (D̂l, E) = λl for l = 2, . . . , n.

Now let us construct the matrix C. First, choose the vector

Ĉ1 =
B

||B||2
; then (Ĉ1, B) = 1. Next, choose the vectors Ĉl, l = 2, . . . , n,

as follows: Ĉl = D̂l + Ĉ1. The vectors Ĉ1, D̂2, . . . , D̂n form a base in
Rn; so, Ĉ1, Ĉ2, . . . , Ĉn form a base in Rn, i. e., detC 6= 0. For the con-
structed matrix C we have the following: (Ĉ1, B) = 1 for l = 2, . . . , n,
(Ĉl, B) = (D̂l + Ĉ1, B) = (Ĉ1, B) = 1, because D̂l ∈Mn−1, i. e., condition
(3) holds. Besides, condition (8) with this matrix C becomes

P (2)(Ĉ2 − Ĉ1, E) + . . .+ P (n)(Ĉn − Ĉ1, E) = 0 ⇐⇒

P (2)(D̂2, E) + . . .+ P (n)(D̂n, E) = 0⇐⇒
n∑

l=2

λlP
(l) = 0.

Therefore, condition (8) holds, and so does condition (4).
Theorem 1 is proved. �

Remark 1. Note that in the proof of Theorem 1, the constant c that
connects B and the matrix A we were looking for can be made equal to 1.

This can always be done by replacing A by the matrix A1 =
1

c
A.

Proof of Theorem 2. To proof Theorem 2, it is enough to establish the
existence of a non-degenerate matrix A and a mapping f from Theorem C,
such that the equality Φ(X) = A−1f(AX) holds for any {qkl} that obey
the assumptions of Theorem 2. The proof of Theorem 1 shows that this
equality holds if and only if the following two conditions hold (notation of
Theorem 1 is used):

a) condition (3), and
b) a connection between {pkl} to define the mapping f and {q∗kl} from

formula (3′).
According to Remark 1, the constant c = 1 without loss of generality.

In the sequel, this is assumed. In a) and b) condition (4) from Theorem 1
is no longer considered.



160 V. V. Starkov

Rewrite (3′) in the form
c11 . . . c1n
...

...
...

ck1 . . . ckn
...

...
...

cn1 . . . cnn




p12 . . . p1m
...

...
...

pk2 . . . pkm
...

...
...

pn2 . . . pnm

 =


q12 . . . q1m
...

...
...

qk2 . . . qkm
...

...
...

qn2 . . . qnm

 . (10)

Condition (3) becomes

(Ĉk − Ĉ1) ⊥ B, k = 2, . . . , n, (Ĉ1, B) = 1.

The construction of the matrix C = A−1 we are looking for is borrowed
from the proof of part 2 of Theorem 1: an arbitrary base of Mn−1 is taken
as the vectors (Ĉl−Ĉ1), l = 2, . . . ,n, and Ĉ1 is any vector that (Ĉ1, B) = 1.
Then condition a) holds. To fulfil b), choose a suitable mapping f from
Theorem C. Taking into account equality (7) from the definition of the
mapping f , rewrite (10) as follows:

p2l(c12 − c11) + . . .+ pnl(c1n − c11) = q1l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p2l(cn2 − cn1) + . . .+ pnl(cnn − cn1) = qnl

⇐⇒

⇐⇒ (Ĉ2 − Ĉ1)p2l + . . .+ (Ĉn − Ĉ1)pnl = Ql, (11)

where l = 2, . . . ,m.
Note that Ql ∈ Mn−1; so, the numbers {pkl}nk=2 are uniquely defined

by (11) for any l = 2, . . . ,m as coordinates of the vector Ql in the base
{Ĉk − Ĉ1}nk=2. The values p1l, l = 2, . . . ,m, are defined from (7). This
completely defines the mapping f from Theorem C.

Theorem 2 is proved �

Remark 2. Note that, according to the proof, the matrix A = C−1 and
the mapping f are defined non-uniquely, given a vector B and vectors
Ql ∈Mn−1, l = 2, . . . ,m.

Remark 3. From Theorem A we see that the assumption that the vectors
Ql belong to the orthogonal subspace Mn−1 in Theorem 2 is important.
It can not be weakened, at least in the case n = 2, m = 3.

Also note that Theorem C follows from Theorem 2 for B = (1, . . . , 1).
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3. An idea of mapping composition. The following theorem shows
that the trivial idea of using compositions of Keller mappings for building
new classes of such mappings can be quite important.

Theorem 3. Assume that for each natural s = 1, . . . , r, r ∈ N, r 6 n,
the polynomial mappings

Φs(X) = A−1
s fs(AsX) = X +


q

(s)
12 Z

2
s (X) + . . .+ q

(s)
1mZ

m
s (X)

...
q

(s)
n2Z

2
s (X) + . . .+ q

(s)
nmZm

s (X)

 =:

=: X +


V

(s)
1 (X)
...

V
(s)
n (X)

 =: X + V (s)(X)

obey the assumptions of Theorem 2, Zs(X) = (X,Bs), the vectors
Bs = (b

(s)
1 , . . . , b

(s)
n ) 6= 0. Denote the linear (n − 1)-dimensional subspace

orthogonal to the vector Bs by M (s)
n−1,

Q
(s)
l =


q

(s)
1l
...
q

(s)
nl

 , l = 2, . . . ,m.

Assume that for any l = 2, . . . ,m the following inclusions hold:

Q
(1)
l ∈

r⋂
s=1

M
(s)
n−1, Q

(2)
l ∈

r⋂
s=2

M
(s)
n−1, . . . , Q

(r)
l ∈M

(r)
n−1.

Then the polynomial mapping F (X) = Φr ◦ Φr−1 ◦ · · · ◦ Φ2 ◦ Φ1 has the

form F (X) = X +
r∑

s=1

V (s)(X), it is a Keller mapping, and the JC is true

for it.

Proof. Consider

Φ2 ◦ Φ1(X) = Φ2(X + V (1)(X)) = X + V (1)(X)+

+


q

(2)
12 Z

2
2(X + V (1)(X)) + . . .+ q

(2)
1mZ

m
2 (X + V (1)(X))

...
q

(2)
n2Z

2
2(X + V (1)(X)) + . . .+ q

(2)
nmZm

2 (X + V (1)(X))

 ,
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where
Z2(X + V (1)(X)) = (X,B2) + (V (1)(X), B2) =

= (X,B2) +Z2
1(X)(Q

(1)
2 , B2) + . . .+Zm

1 (X)(Q(1)
m , B2) = (X,B2) = Z2(X),

because for any l the vectors Q(1)
l ∈ M

(2)
n−1 by the assumptions of the

Theorem. Therefore, Φ2 ◦ Φ1(X) = X + V (1)(X) + V (2)(X).
Now consider

Φ3 ◦ Φ2 ◦ Φ1(X) = Φ3[X + V (1)(X) + V (2)(X)] =

= X + V (1)(X) + V (2)(X) +


m∑
l=2

q
(3)
1l Z

l
3[X + V (1)(X) + V (2)(X)]

...
m∑
l=2

q
(3)
nl Z

l
3[X + V (1)(X) + V (2)(X)]

 ,

where

Z3[X +V (1)(X) +V (2)(X)] = (X,B3) + (V (1)(X), B3) + (V (2)(X), B3) =

= (X,B3) + [Z2
1(X)(Q

(1)
2 ,B3) + · · ·+ Zm

1 (X)(Q(1)
m , B3)]+

+ [Z2
2(X)(Q

(2)
2 , B3) + . . .+ Zm

2 (X)(Q(2)
m , B3)] = (X,B3) = Z3(X),

because Q(1)
l ∈M

(3)
n−1 3 Q

(2)
l for any l = 2, . . . ,m. Therefore,

Φ3 ◦ Φ2 ◦ Φ1(X) = X + V (1)(X) + V (2)(X) + V (3)(X).

Continuing in the same way (if r > 3), we come to the statement of the
Theorem 3. �

Theorem 3 significantly widens, compared to Theorem C, the set of
described Keller mappings for which JC is true. Even more, it also seems
interesting in the context of the well-known result of Drużkowski (see,
e. g., [1]):

Theorem D. [1] In order to verify JC for every N 3 n > 2, it is sufficient
to check it only for polynomial mappings F of the cubic linear form, i. e.,

F (X) = X +

(B1, X)3

...
(Bn, X)3

 ;
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the matrix

B =

b
(1)
1 . . . b

(1)
n

... . . . ...
b

(n)
1 . . . b

(n)
n

 ,

built of the vectors Bs = (b
(s)
1 , . . . , b

(s)
n ), s − 1, . . . ,n, may be considered

nilpotent: B2 = 0.
Let us write down Theorem 3 for the case r = n, m = 3, Q(s)

2 = 0 for
s = 1, . . . , n:

Corollary 1. Using the notation of Theorem 3, let Bs, s = 1, . . . , n, the
system of linearly dependent vectors

Q
(1)
3 ∈

n⋂
s=1

M
(s)
n−1, Q

(2)
3 ∈

n⋂
s=2

M
(s)
n−1, . . . , Q

(n)
3 ∈M (n)

n−1.

Then the polynomial mapping

F (X) = X +Q
(1)
3 Z3

1(X) +Q
(2)
3 Z3

2(X) + . . .+Q
(n)
3 Z3

n(X) (12)

is a Keller mapping and JC is true for it.

Note that dim

( n⋂
s=1

M
(s)
n−1

)
> 1, because the vectors Bs in the Corol-

lary 1 are linearly dependent. Corollary 1 allows generating sets of Keller
mappings of the form (12). The following example is inspired by this
Corollary and Theorem D.

Example. Let B be a nilpotent matrix, B2 = 0;

B =

b
(1)
1 . . . b

(1)
k . . . b

(1)
n

... . . . ... . . . ...
b

(n)
1 . . . b

(n)
k . . . b

(n)
n

 ,

i. e., for any k = 1, . . . n
b

(1)
1 b

(1)
k + b

(1)
2 b

(2)
k + . . .+ b

(1)
n b

(n)
k = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b

(n)
1 b

(1)
k + b

(n)
2 b

(2)
k + . . .+ b

(n)
n b

(n)
k = 0.

(13)
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In the Corollary 1, choose the vectors (b
(s)
1 , . . . , b

(s)
n ), s = 1, . . . , n, for

the vectors Bs. Let

Q
(1)
3 = (b

(1)
1 , . . . , b

(n)
1 ), Q

(2)
3 = (b

(1)
2 , . . . , b

(n)
2 ), . . . , Q

(n)
3 = (b(1)

n , . . . , b(n)
n ).

From (13) it follows that Q(k)
3 ⊥ Bs for any k, s = 1, . . . ,n. Therefore, all

assumptions in Corollary 1 are fulfilled. So,

F (X) = X +


b

(1)
1
...
b

(n)
1

 (B1, X)3 + . . .+


b

(1)
n

...
b

(n)
n

 (Bn, X)3

are injective Keller mappings for any nilpotent matrix B.
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