
110 Probl. Anal. Issues Anal. Vol. 9 (27), No 1, 2020, pp. 110–127
DOI: 10.15393/j3.art.2020.7470

UDC 517.521, 517.98

Gh. Rahimlou, V. Sadri, R. Ahmadi

WEIGHTED RIESZ BASES IN G-FUSION FRAMES AND
THEIR PERTURBATION

Abstract. In this paper, we introduce orthonormal and Riesz bases
for g-fusion frames and show that the weights have basic roles.
Next, we prove an effective theorem between frames and g-fusion
frames by using an operator. Finally, perturbations of g-fusion
frames will be presented.
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1. Introduction and preliminaries. Bases play a prominent role
in discrete frames and their studying can extract interesting properties
from the frames. One of the most important types of bases are orthonor-
mal bases and also, as their special case, the Riesz basis. The Riesz
basis has been defined in [6] by the image of orthonormal bases with a
bounded bijective operator, but for fusion and generalized frames, there
are different strategies [4], [14]. In this paper, we transfer some common
properties of g-frames to g-fusion frames, which have been defined by au-
thors. Afterwards, orthonormal bases have been equalized in a property
with complete sequences and inequalities for the synthesis operator. Sun
in [15] introduced a Riesz basis for g-frames by using that property and
we will continue his method in section 1 for g-fusion frames. In section 2,
we present a useful operator for characterization of these frames. Finally,
in section 3, a perturbation of these frames is studied.

Throughout this paper, 𝐻 and 𝐾 are separable Hilbert spaces and
ℬ(𝐻,𝐾) is the collection of all bounded linear operators of 𝐻 into 𝐾. If
𝐾 = 𝐻, then ℬ(𝐻,𝐻) is denoted by ℬ(𝐻). Also, 𝜋𝑉 is the orthogonal
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projection from 𝐻 onto a closed subspace 𝑉 ⊂ 𝐻 and {𝐻𝑗}𝑗∈J is a se-
quence of Hilbert spaces, where J is a subset of Z. It is easy to check that
if 𝑢 ∈ ℬ(𝐻) and 𝑉 ⊂ 𝐻 is a closed subspace, then [11]

𝜋𝑉 𝑢
*𝜋𝑢𝑉 = 𝜋𝑉 𝑢

*.

We define the space H2 :=
(︁∑︀

𝑗∈J
⊕𝐻𝑗

)︁
ℓ2

by

H2 =
{︀
{𝑓𝑗}𝑗∈J : 𝑓𝑗 ∈ 𝐻𝑗,

∑︁
𝑗∈J

‖𝑓𝑗‖2 < ∞
}︀
, (1)

with the inner product defined by

⟨{𝑓𝑗}, {𝑔𝑗}⟩ =
∑︁
𝑗∈J

⟨𝑓𝑗, 𝑔𝑗⟩.

It is clear that H2 is a Hilbert space with pointwise operations.

Definition 1. Let 𝑊 = {𝑊𝑗}𝑗∈J be a collection of closed subspaces of
𝐻, {𝑣𝑗}𝑗∈J be a family of weights, i. e., 𝑣𝑗 > 0 and Λ𝑗 ∈ ℬ(𝐻,𝐻𝑗) for
each 𝑗 ∈ J. We say Λ := (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J is a generalized fusion frame (or
g-fusion frame) for 𝐻 if there exists 0 < 𝐴 6 𝐵 < ∞ such that for each
𝑓 ∈ 𝐻

𝐴‖𝑓‖2 6
∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2 6 𝐵‖𝑓‖2. (2)

We call Λ a Parseval g-fusion frame if 𝐴 = 𝐵 = 1. When the right-hand
side of (2) holds, Λ is called a g-fusion Bessel sequence for 𝐻 with bound
𝐵. Throughout this paper, Λ is a triple (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J unless otherwise
noted.

When Λ is a g-fusion Bessel sequence, then the synthesis and analysis
operators in the g-fusion frames are defined by

𝑇Λ : H2 −→ 𝐻, 𝑇 *
Λ : 𝐻 −→ H2,

𝑇Λ({𝑓𝑗}𝑗∈J) =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗, 𝑇 *
Λ(𝑓) = {𝑣𝑗Λ𝑗𝜋𝑊𝑗

𝑓}𝑗∈J.

Thus, the g-fusion frame operator is given by

𝑆Λ𝑓 = 𝑇Λ𝑇
*
Λ𝑓 =

∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
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and
⟨𝑆Λ𝑓, 𝑓⟩ =

∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2. (3)

Therefore,
𝐴𝐼𝑑𝐻 6 𝑆Λ 6 𝐵𝐼𝑑𝐻 .

This means that 𝑆Λ is a bounded, positive, and invertible operator. So,
we have the reconstruction formula for any 𝑓 ∈ 𝐻:

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ 𝑓 =

∑︁
𝑗∈J

𝑣2𝑗𝑆
−1
Λ 𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑓. (4)

With the same method as in Theorem 3.1.3 and 5.4.1 in [6], we can prove
the following results.

Theorem 1. Λ is a g-fusion Bessel sequence for 𝐻 with bound 𝐵 if
and only if the operator 𝑇Λ is a well-defined and bounded operator with
‖𝑇𝜆‖ 6

√
𝐵.

Theorem 2. Λ is a g-fusion frame for 𝐻 if and only if

𝑇Λ : H2 −→ 𝐻,

𝑇Λ({𝑓𝑗}𝑗∈J) =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗

is well-defined, bounded, and surjective.

Definition 2. A g-fusion frame ̃︀Λ := (𝑆−1
Λ 𝑊𝑗,Λ𝑗𝜋𝑊𝑗

𝑆−1
Λ , 𝑣𝑗)𝑗∈J with

g-fusion frame operator 𝑆̃︀Λ = 𝑇̃︀Λ𝑇 *̃︀Λ is called the (canonical) dual g-fusion
frame of Λ.

It is easy to check that for each 𝑓 ∈ 𝐻,

𝑇 *̃︀Λ𝑓 = 𝑇 *
Λ(𝑆−1

Λ 𝑓).

Hence, 𝑇Λ𝑇
*̃︀Λ = 𝐼𝑑𝐻 and also 𝑆̃︀Λ = 𝑆−1

Λ . Now, we can obtain, by (??),

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗
̃︁Λ𝑗𝜋̃︁𝑊𝑗

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋̃︁𝑊𝑗

̃︁Λ𝑗

*
Λ𝑗𝜋𝑊𝑗

𝑓, (5)

where ̃︁𝑊𝑗 := 𝑆−1
Λ 𝑊𝑗 and Λ̃𝑗 := Λ𝑗𝜋𝑊𝑗

𝑆−1
Λ .
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Definition 3. Let Λ𝑗 ∈ ℬ(𝐻,𝐻𝑗) for each 𝑗 ∈ J. Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J is
called a g-f-complete, if

span{𝜋𝑊𝑗
Λ*

𝑗𝐻𝑗} = 𝐻.

It is easy to check that Λ is g-f-complete if and only if

{𝑓 : Λ𝑗𝜋𝑊𝑗
𝑓 = 0, 𝑗 ∈ J} = {0}.

Theorem 3. If Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J is a g-fusion frame for 𝐻, then Λ is
a g-f-complete.

Proof. Let 𝑓 ∈ (span{𝜋𝑊𝑗
Λ*

𝑗𝐻𝑗})⊥ ⊆ 𝐻. For each 𝑗 ∈ J and 𝑔𝑗 ∈ 𝐻𝑗, we
have

⟨Λ𝑗𝜋𝑊𝑗
𝑓, 𝑔𝑗⟩ = ⟨𝑓, 𝜋𝑊𝑗

Λ*
𝑗𝑔𝑗⟩ = 0,

so, Λ𝑗𝜋𝑊𝑗
𝑓 = 0 for all 𝑗 ∈ J. Since Λ is a g-fusion frame for 𝐻, then

‖𝑓‖ = 0. Thus, 𝑓 = 0, and we get (span{𝜋𝑊𝑗
Λ*

𝑗𝐻𝑗})⊥ = {0}. �

2. G-f-Riesz and orthonormal bases. In this section, we aim
to introduce Riesz and orthonormal bases for g-fusion frames, which are
extension cases of g-frames, and present some results about them.

Definition 4. Let 𝑊 = {𝑊𝑗}𝑗∈J be a collection of closed subspaces of 𝐻
and 𝑗 ∈ J. We say that (𝑊𝑗,Λ𝑗)𝑗∈J is a g-f-orthonormal bases for 𝐻 with
respect to {𝑣𝑗}𝑗∈J, if

⟨𝑣𝑖𝜋𝑊𝑖
Λ*

𝑖 𝑔𝑖, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗⟩ = 𝛿𝑖,𝑗⟨𝑔𝑖, 𝑔𝑗⟩ , 𝑖, 𝑗 ∈ J , 𝑔𝑖 ∈ 𝐻𝑖 , 𝑔𝑗 ∈ 𝐻𝑗 (6)

∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2 = ‖𝑓‖2 , 𝑓 ∈ 𝐻. (7)

Definition 5. Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J is called a g-f-Riesz basis for 𝐻 if

1) Λ is g-f-complete,

2) There exist 0 < 𝐴 6 𝐵 < ∞, such that for each finite subset I ⊆ J
and 𝑔𝑗 ∈ 𝐻𝑗, 𝑗 ∈ I,

𝐴
∑︁
𝑗∈I

‖𝑔𝑗‖2 6
⃦⃦∑︁

𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗
⃦⃦2
6 𝐵

∑︁
𝑗∈I

‖𝑔𝑗‖2. (8)
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It is easy to check that if Λ is a g-f-Riesz basis for 𝐻, then the operator
𝑇Λ defined by

𝑇Λ : H2 −→ 𝐻,

𝑇Λ({𝑔𝑗}𝑗∈J) =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗,

is injective.

Theorem 4. Let Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J be a g-fusion frame for 𝐻 and sup-
pose that (6) holds. Then Λ is a g-f-orthonormal basis for 𝐻.

Proof. Assume that 𝑆Λ is the g-fusion frame operator of Λ and

𝑀 := {𝑓 ∈ 𝐻 : 𝑆Λ𝑓 = 𝑓}.

It is clear that 𝑀 is a non-empty closed subspace of 𝐻. Let 𝑓 ∈ 𝐻 and
𝑘 ∈ J. Since

𝑣𝑗𝑣𝑘𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝜋𝑊𝑘

Λ*
𝑘Λ𝑘𝜋𝑊𝑘

𝑓 = 𝛿𝑗, 𝑘𝜋𝑊𝑘
Λ*

𝑘Λ𝑘𝜋𝑊𝑘
𝑓,

then 𝜋𝑊𝑘
Λ*

𝑘Λ𝑘𝜋𝑊𝑘
𝑓 ∈ 𝑀 . So, for any ℎ ∈ 𝑀⊥ and 𝑔 ∈ 𝑀 we have, for all

𝑗 ∈ J
⟨𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

ℎ, 𝑔⟩ = ⟨ℎ, 𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑔⟩ = 0.

Thus, 𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
ℎ = 0 for each 𝑗 ∈ J, and so ‖Λ𝑗𝜋𝑊𝑗

ℎ‖ = 0. By
definition of g-fusion frame, we obtain ℎ = 0. Therefore, 𝑀⊥ = {0}, and
we conclude 𝐻 = 𝑀 . So, 𝑆Λ = 𝐼𝑑𝐻 , and the proof is completed. �

Theorem 5. Λ is a g-f-orthonormal basis for 𝐻 if and only if

(I) 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗 is isometric for any 𝑗 ∈ J;
(II)

⨁︀
𝑗∈J 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗(𝐻𝑗) = 𝐻.

Proof. Suppose that Λ is a g-f-orthonormal basis for 𝐻. If 𝑗 ∈ J and
𝑔 ∈ 𝐻𝑗, we have

⟨𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔⟩ = 𝛿𝑗, 𝑗⟨𝑔, 𝑔⟩ = ⟨𝑔, 𝑔⟩.

Then, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗 is isometric for any 𝑗 ∈ J. So, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗(𝐻𝑗) is a closed
subspace of 𝐻. Therefore, for each 𝑗 ∈ J and 𝑓 ∈ 𝐻, we have from (7):

⟨𝑓, 𝑓⟩ =
∑︁
𝑗∈J

𝑣2𝑗 ⟨Λ𝑗𝜋𝑊𝑗
𝑓, Λ𝑗𝜋𝑊𝑗

𝑓⟩ =
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= ⟨
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓, 𝑓⟩.

Thus, for each 𝑓 ∈ 𝐻,

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓.

By letting 𝑔𝑗 := 𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓 , we obtain 𝑓 =

∑︀
𝑗∈J 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗𝑔𝑗 and∑︁

𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗‖2 =
∑︁
𝑗∈J

‖𝑔𝑗‖2 =
∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2 = ‖𝑓‖2.

So,
⨁︀

𝑗∈J 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗(𝐻𝑗) = 𝐻. Conversely, if (I), (II) are satisfied, then (6)
is clear. Indeed, for each 𝑖 ̸= 𝑗, 𝑣𝑖𝜋𝑊𝑖

Λ*
𝑖 (𝐻𝑖) ⊥ 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗(𝐻𝑗) and 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗

are isometric. Let 𝑓 ∈ 𝐻; we get from (II), for any 𝑗 ∈ J and some
𝑔𝑗 ∈ 𝐻𝑗,

𝑓 =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗

and
‖𝑓‖2 =

∑︁
𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗‖2 =
∑︁
𝑗∈J

‖𝑔𝑗‖2.

Now, let 𝑖 ∈ J; then, for each 𝑓,ℎ ∈ 𝐻𝑗,

⟨𝑣𝑗Λ𝑖𝜋𝑊𝑖
𝑓, ℎ⟩ = ⟨

∑︁
𝑗∈J

𝑣2𝑗Λ𝑖𝜋𝑊𝑖
𝜋𝑊𝑗

Λ*
𝑗𝑔𝑗, ℎ⟩ =

=
∑︁
𝑗∈J

𝑣2𝑗 ⟨𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗, 𝜋𝑊𝑖
Λ*

𝑖ℎ⟩ =

= ⟨𝑣𝑖𝜋𝑊𝑖
Λ*

𝑖 𝑔𝑖, 𝑣𝑖𝜋𝑊𝑖
Λ*

𝑖ℎ⟩ =

= ⟨𝑔𝑖, ℎ⟩.

Hence, 𝑔𝑖 = 𝑣𝑖Λ𝑖𝜋𝑊𝑖
𝑓 for each 𝑖 ∈ J. So, 𝑓 =

∑︀
𝑗∈J 𝑣

2
𝑗𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑓 for all
𝑓 ∈ 𝐻, and (7) is proved. �

Corollary 1. Every g-f-orthonormal basis for 𝐻 is a g-f-Riesz basis for
𝐻 with the bounds 𝐴 = 𝐵 = 1.

Theorem 6. Let Θ = (𝑊𝑗,Θ𝑗)𝑗∈J be a g-f-orthonormal basis with re-
spect to {𝑣𝑗}𝑗∈J and Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J be a g-fusion frame for 𝐻 with



116 Gh. Rahimlou, V. Sadri, R. Ahmadi

the same weights. Then there exists a surjective operator 𝑉 ∈ ℬ(𝐻), such
that Λ𝑗𝜋𝑊𝑗

= Θ𝑗𝜋𝑊𝑗
𝑉 * for all 𝑗 ∈ J.

Proof. Let

𝑉 : 𝐻 −→ 𝐻,

𝑉 𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓.

Then 𝑉 is well-defined and bounded. Indeed, for each finite subset I ⊆ J
and 𝑓 ∈ 𝐻,

‖𝑉 𝑓‖ = sup
‖ℎ‖=1

⃒⃒⟨︀∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓, ℎ

⟩︀⃒⃒
6

6
√
𝐵
(︀∑︁

𝑗∈J

𝑣2𝑗‖Θ𝑗𝜋𝑊𝑗
𝑓‖2

)︀ 1
2 =

√
𝐵‖𝑓‖,

where 𝐵 is an upper g-fusion frame bound for Λ. Therefore, the series is
weakly unconditionally Cauchy, and so is unconditionally convergent in
𝐻 (see [7], page 58), and also ‖𝑉 ‖ 6

√
𝐵. Since Θ is a g-f-orthonormal

basis, then
Θ𝑗𝜋𝑊𝑗

𝜋𝑊𝑖
Θ*

𝑖 𝑔 = (𝑣𝑖𝑣𝑗)
−1𝛿𝑖,𝑗𝑔

and

𝑉 𝜋𝑊𝑖
Θ*

𝑖 𝑔 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Θ𝑗𝜋𝑊𝑗
𝜋𝑊𝑖

Θ*
𝑖 𝑔 = 𝜋𝑊𝑖

Λ*
𝑖 𝑔,

for all 𝑔 ∈ 𝐻𝑗 and 𝑖 ∈ J. Thus, Λ𝑗𝜋𝑊𝑗
= Θ𝑗𝜋𝑊𝑗

𝑉 *. Now, we show that 𝑉
is surjective. Assume that 𝑓 ∈ 𝐻. By Theorem 2, there is {𝑔𝑗}𝑗∈J ∈ H2,
such that

∑︀
𝑗∈J 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗𝑔𝑗 = 𝑓 . Let 𝑔 := 𝑇Θ({𝑔𝑗}𝑗∈J), thus

𝑉 𝑔 =
∑︁
𝑗∈J

𝑉 𝑣𝑗𝜋𝑊𝑗
Θ*

𝑗𝑔𝑗 =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗 = 𝑓

and 𝑉 is surjective. �

Corollary 1. If Λ is a Parseval g-fusion frame for 𝐻, then 𝑉 * is isometric.

Corollary 2. If Λ is a g-f-Riesz basis for 𝐻, then 𝑉 is invertible.

Proof. Let 𝑉 𝑓 = 0 and 𝑓 ∈ 𝐻. Since 𝑇Λ is injective and

𝑉 𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓 = 𝑇Λ𝑇

*
Θ𝑓,



Weighted Riesz bases in g-fusion frames and their perturbation 117

therefore, 𝑇 *
Θ𝑓 = 0. So, ‖𝑓‖2 = ‖𝑇Θ𝑓‖2 = 0, hence, 𝑓 = 0. �

Corollary 3. If (𝑊𝑗,Λ𝑗)𝑗∈J is a g-f-orthonormal basis for 𝐻 with respect
to {𝑣𝑗}𝑗∈J, then 𝑉 is unitary.

Proof. By Corollaries 1 and 2, the operator 𝑉 is invertible. Let 𝑓 ∈ 𝐻.
We obtain

‖𝑓‖2 =
∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2 =

∑︁
𝑗∈J

‖Θ𝑗𝜋𝑊𝑗
𝑉 *𝑓‖2 = ‖𝑉 *𝑓‖2.

Thus, 𝑉 𝑉 * = 𝑖𝑑𝐻 ; this means that 𝑉 is unitary. �

3. Characterizations of g-fusion frames, g-f-Riesz and
g-f-orthonormal bases. Sun in [15] showed that each g-frame for 𝐻
induces a sequence in 𝐻, dependent on the g-frame; he also proved a use-
ful theorem about them. In this section, we are going to extend Sun’s
method for g-fusion frames.

Let 𝑊 = {𝑊𝑗}𝑗∈J be a family of closed subspaces of 𝐻, {𝑣𝑗}𝑗∈J be
a family of weights, Λ𝑗 ∈ ℬ(𝐻,𝐻𝑗) for each 𝑗 ∈ J and {𝑒𝑗, 𝑘}𝑘∈K𝑗

be an
orthonormal basis for 𝐻𝑗, where K𝑗 ⊆ Z and 𝑗 ∈ J. Suppose that

𝜙 : ℎ −→ C,
𝜙(𝑓) = ⟨𝑣𝑗Λ𝑗𝜋𝑊𝑗

𝑓, 𝑒𝑗, 𝑘⟩.

We have
‖𝜙𝑓‖ 6 𝑣𝑗‖Λ𝑗‖‖𝑓‖,

therefore, 𝜙 is a bounded linear functional on 𝐻. Now, we can write

⟨𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓, 𝑒𝑗,𝑘⟩ = ⟨𝑓, 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗𝑒𝑗, 𝑘⟩.

So, if
𝑢𝑗,𝑘 := 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗𝑒𝑗, 𝑘, 𝑗 ∈ J, 𝑘 ∈ K𝑗 (9)

then ⟨𝑓, 𝑢𝑗,𝑘⟩ = ⟨𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓, 𝑒𝑗,𝑘⟩ for all 𝑓 ∈ 𝐻.

Remark 1. Using (9), we get for each 𝑓 ∈ 𝐻:

𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓 =

∑︁
𝑘∈K𝑗

⟨𝑓, 𝑢𝑗,𝑘⟩𝑒𝑗,𝑘. (10)

But ∑︁
𝑘∈K𝑗

|⟨𝑓, 𝑢𝑗,𝑘⟩|2 6 𝑣2𝑗‖Λ𝑗‖2‖𝑓‖2.
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Thus, {𝑢𝑗,𝑘}𝑘∈K𝑗
is a Bessel sequence for 𝐻. It follows that for each 𝑓 ∈ 𝐻

and 𝑔 ∈ 𝐻𝑗:

⟨𝑓, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔⟩ = ⟨𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓, 𝑔⟩ =

∑︁
𝑘∈K𝑗

⟨𝑣𝑗𝜋𝑊𝑗
Λ𝑗𝑓, 𝑒𝑗, 𝑘⟩⟨𝑒𝑗, 𝑘, 𝑔⟩ =

=
∑︁
𝑘∈K𝑗

⟨𝑓, 𝑢𝑗,𝑘⟩⟨𝑒𝑗, 𝑘, 𝑔⟩ =
⟨
𝑓,

∑︁
𝑘∈K𝑗

⟨𝑔, 𝑒𝑗, 𝑘⟩𝑢𝑗, 𝑘

⟩
.

Therefore,

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔 =
∑︁
𝑘∈K𝑗

⟨𝑔, 𝑒𝑗, 𝑘⟩𝑢𝑗, 𝑘 (11)

for all 𝑔 ∈ 𝐻𝑗.

We call {𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗} the sequence induced by Λ.

Theorem 7. Let Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J and 𝑢𝑗, 𝑘 be defined by (9). Then
we get the following:

(I) Λ is a g-fusion frame (resp. g-fusion Bessel sequence, Parseval g-
fusion frame, g-f-Riesz basis, g-f-orthonormal basis) for 𝐻 if and
only if {𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗} is a frame (resp. Bessel sequence,
Parseval frame, Riesz basis, orthonormal basis) for 𝐻.

(II) The g-fusion operator for Λ coincides with the frame operator for
{𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗}.

Proof. (I). By (10), Λ is a g-fusion frame (resp. g-fusion Bessel sequence,
Parseval g-fusion frame) for 𝐻 if and only if {𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗} is a
frame (resp. Bessel sequence, Parseval frame) for 𝐻.

Assume that Λ is a g-f-Riesz basis for 𝐻 and 𝑔𝑗 ∈ 𝐻𝑗. Thus,

𝑔𝑗 =
∑︁
𝑘∈K𝑗

𝑐𝑗, 𝑘𝑒𝑗, 𝑘,

where 𝑐𝑗, 𝑘 ∈ ℓ(K𝑗). Note that, by (10),

{𝑓 : Λ𝑗𝜋𝑊𝑗
𝑓 = 0, 𝑗 ∈ J} = {𝑓 : ⟨𝑓, 𝑢𝑗, 𝑘⟩ = 0, 𝑗 ∈ J, 𝑘 ∈ K𝑗}

and
𝐴
∑︁
𝑗∈I

‖𝑔𝑗‖2 6
⃦⃦∑︁

𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗
⃦⃦2
6 𝐵

∑︁
𝑗∈I

‖𝑔𝑗‖2
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is equivalent to

𝐴
∑︁
𝑗∈I

∑︁
𝑘∈K𝑗

|𝑐𝑗,𝑘|2 6
⃦⃦∑︁

𝑗∈I

∑︁
𝑘∈K𝑗

𝑐𝑗,𝑘𝑢𝑗,𝑘

⃦⃦2
6 𝐵

∑︁
𝑗∈I

∑︁
𝑘∈K𝑗

|𝑐𝑗,𝑘|2

for any finite I ⊆ J. Thus, Λ is a g-f-Riesz basis if and only if
{𝑢𝑗, 𝑘 : 𝑗 ∈ 𝐽, 𝑘 ∈ K𝑗} is a Riesz basis.

Now, let (𝑊𝑗,Λ𝑗)𝑗∈J be a g-f-orthonormal basis for 𝐻 with respect to
{𝑣𝑗}𝑗∈J. We get, for any 𝑗1, 𝑗2 ∈ J, 𝑘1 ∈ K𝑗1 and 𝑘2 ∈ K𝑗2 :

⟨𝑢𝑗1,𝑘1 , 𝑢𝑗2,𝑘2⟩ = ⟨𝑣𝑗1𝜋𝑊𝑗1
Λ*

𝑗1
𝑒𝑗1,𝑘1 , 𝑣𝑗2𝜋𝑊𝑗2

Λ*
𝑗2
𝑒𝑗2,𝑘2⟩ = 𝛿𝑗1,𝑘1𝛿𝑗2,𝑘2 .

So, {𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗} is an orthonormal sequence. Moreover

‖𝑓‖2 =
∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2 =

∑︁
𝑗∈J

∑︁
𝑘∈K𝑗

|⟨𝑓, 𝑢𝑗,𝑘⟩|2

for any 𝑓 ∈ 𝐻. Hence, {𝑢𝑗, 𝑘 : 𝑗 ∈ J, 𝑘 ∈ K𝑗} is an orthonormal basis. For
the opposite implication, we need to prove only that (6) holds. We have,
by (11), for each 𝑗1 ̸= 𝑗2 ∈ J: 𝑔𝑗1 ∈ 𝐻𝑗1 and 𝑔𝑗2 ∈ 𝐻𝑗2 ,

⟨𝑣𝑗1𝜋𝑊𝑗1
Λ*

𝑗1
𝑔𝑗1 , 𝑣𝑗2𝜋𝑊𝑗2

Λ*
𝑗2
𝑔𝑗2⟩ =

=
⟨︀ ∑︁
𝑘1∈K𝑗1

⟨𝑔𝑗1 , 𝑒𝑗1,𝑘1⟩𝑢𝑗1,𝑘1 ,
∑︁

𝑘2∈K𝑗2

⟨𝑔𝑗2 , 𝑒𝑗2,𝑘2⟩𝑢𝑗2,𝑘2

⟩︀
= 0

and for all 𝑔1, 𝑔2 ∈ 𝐻𝑗:

⟨𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔1, 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔2⟩ =

=
⟨︀ ∑︁
𝑘1∈K𝑗

⟨𝑔1, 𝑒𝑗,𝑘1⟩𝑢𝑗,𝑘1 ,
∑︁
𝑘2∈K𝑗

⟨𝑔2, 𝑒𝑗,𝑘2⟩𝑢𝑗,𝑘2

⟩︀
= ⟨𝑔1, 𝑔2⟩.

(II). By (10) and (11), we have, for any 𝑓 ∈ 𝐻:∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓 =

∑︁
𝑗∈J

∑︁
𝑘∈K𝑗

⟨𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓, 𝑒𝑗,𝑘⟩𝑢𝑗,𝑘 =

=
∑︁
𝑗∈J

∑︁
𝑘∈K𝑗

⟨ ∑︁
𝑘′∈K𝑗

⟨𝑓,𝑢𝑗,𝑘′𝑒𝑗,𝑘′⟩, 𝑒𝑗,𝑘
⟩
𝑢𝑗,𝑘 =

∑︁
𝑗∈J

∑︁
𝑘∈K𝑗

⟨𝑓,𝑢𝑗,𝑘⟩𝑢𝑗,𝑘.

�

Corollary 1. Let Λ = (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J be a g-fusion frame for 𝐻. Then
the following are equivalent:
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(I) Λ is a g-f-Riesz basis for 𝐻.
(II) For any finite subset I ⊂ J, if

∑︀
𝑗∈I 𝑣𝑗𝜋𝑊𝑗

Λ*
𝑗𝑔𝑗 = 0 for some {𝑔𝑗}𝑗∈I ∈

H2, then 𝑔𝑗 = 0 for all 𝑗 ∈ J.
Proof. (I) ⇒ (II). Let I ⊂ J be finite. So, by (8), we get

∑︀
𝑗∈I ‖𝑔𝑗‖2 = 0.

Thus, 𝑔𝑗 = 0 for all 𝑗 ∈ I and so it is true for all 𝑗 ∈ J.
(II) ⇒ (I). Let 𝑗 ∈ J and {𝑒𝑗, 𝑘}𝑘∈K𝑗

be an orthonormal basis for 𝐻𝑗

where K𝑗 ⊂ Z. Assume that {𝑔𝑗}𝑗∈I ∈ H2, such that
∑︀

𝑗∈I 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗 = 0.
Therefore,

𝑔𝑗 =
∑︁
𝑘∈K𝑗

⟨𝑔𝑗, 𝑒𝑗, 𝑘⟩𝑒𝑗, 𝑘.

Hence,
0 =

∑︁
𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑔𝑗 =
∑︁
𝑗∈I

∑︁
𝑘∈K𝑗

⟨𝑔𝑗, 𝑒𝑗, 𝑘⟩𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑒𝑗, 𝑘.

Now, if 𝑢𝑗,𝑘 := 𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑒𝑗, 𝑘, then ⟨𝑔𝑗, 𝑒𝑗, 𝑘⟩ = 0 by item (II) for every 𝑗 ∈ J
and 𝑘 ∈ K𝑗. So, by Theorem 5.2.2 in [6], we state that {𝑢𝑗,𝑘}𝑗∈J,𝑘∈K𝑗

is a
Riesz basis; so, by Theorem 7, Λ is a g-f-Riesz basis. �

4. Perturbation of g-fusion frames In this section, we present
some perturbations of g-fusion frames and review some results about them.
First, we need the following result proved in [3].

Lemma 1. Let U be a Linear operator on a Banach space X and assume
that there exist 𝜆1, 𝜆2 ∈ [0, 1), such that

‖𝑥− 𝑈𝑥‖ 6 𝜆1‖𝑥‖ + 𝜆2‖𝑈𝑥‖

for all 𝑥 ∈ 𝑋. Then 𝑈 is bounded and invertible. Moreover,

1 − 𝜆1

1 + 𝜆2

‖𝑥‖ 6 ‖𝑈𝑥‖ 6 1 + 𝜆1

1 − 𝜆2

‖𝑥‖

and

1 − 𝜆2

1 + 𝜆1

‖𝑥‖ 6 ‖𝑈−1𝑥‖ 6 1 + 𝜆2

1 − 𝜆1

‖𝑥‖

for all 𝑥 ∈ 𝑋.

Theorem 8. Let Λ := (𝑊𝑗,Λ𝑗, 𝑣𝑗)𝑗∈J be a g-fusion frame for 𝐻 with
bounds 𝐴,𝐵 and {Θ𝑗 ∈ ℬ(𝐻,𝐻𝑗)}𝑗∈J be a sequence of operators, such
that for any finite subset I ⊆ J and for each 𝑓 ∈ 𝐻
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⃦⃦∑︁
𝑗∈I

𝑣2𝑗
(︀
𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑓 − 𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
)︀⃦⃦
6 𝜆

⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦

+

+ 𝜇
⃦⃦∑︁

𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
⃦⃦

+ 𝛾(
∑︁
𝑗∈I

𝑣2𝑗
⃦⃦

Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦2

)
1
2 ,

where 0 6 max{𝜆 + 𝛾/
√
𝐴, 𝜇} < 1. Then Θ := (𝑊𝑗,Θ𝑗, 𝑣𝑗) is a g-fusion

frame for 𝐻 with bounds

𝐴
1 −

(︀
𝜆 + 𝛾√

𝐴

)︀
1 + 𝜇

𝑎𝑛𝑑 𝐵
1 + 𝜆 + 𝛾√

𝐵

1 − 𝜇
.

Proof. Assume that I ⊆ J is a finite subset and 𝑓 ∈ 𝐻. We have

‖
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
⃦⃦
6 ‖

∑︁
𝑗∈I

𝑣2𝑗
(︀
𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑓 − 𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
)︀⃦⃦

+

+
⃦⃦∑︁

𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓‖ 6 (1 + 𝜆)‖

∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦

+

+ 𝜇‖
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
⃦⃦

+ 𝛾(
∑︁
𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦2

)
1
2 .

Then

⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
⃦⃦
6

1 + 𝜆

1 − 𝜇
‖
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦

+

+
𝛾

1 − 𝜇
(
∑︁
𝑗∈I

𝑣2𝑗
⃦⃦

Λ𝑗𝜋𝑤𝑗
𝑓
⃦⃦2

)
1
2 .

Let 𝑆Λ be the g-fusion frame operator of Λ; then⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦
6 ‖𝑆Λ𝑓

⃦⃦
6 𝐵

⃦⃦
𝑓
⃦⃦
,

and also⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓‖ = sup

‖𝑔‖=1

⃒⃒⟨︀∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓,𝑔

⟩︀⃒⃒
=

= sup
‖𝑔‖=1

⃒⃒⟨︀∑︁
𝑗∈I

𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓,Λ𝑗𝜋𝑊𝑗

𝑔
⟩︀⃒⃒
6
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6
(︁∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2

)︁ 1
2
(︁∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2

)︁ 1
2
6

6
√
𝐵
(︁∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2

)︁ 1
2
.

Therefore, for all 𝑓 ∈ 𝐻⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓
⃦⃦
6

6
(︀1 + 𝜆

1 − 𝜇

√
𝐵 +

𝛾

1 − 𝜇

)︀(︀∑︁
𝑗∈I

𝑣2𝑗
⃦⃦

Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦2)︀ 1

2 < ∞.

So,
∑︀
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓 is unconditionally convergent. Let

𝑆Θ : 𝐻 −→ 𝐻,

𝑆Θ(𝑓) =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓.

𝑆Θ is a well defined and bounded operator with

‖𝑆Θ‖ 6
1 + 𝜆

1 − 𝜇
𝐵 +

𝛾
√
𝐵

1 − 𝜇

and for each 𝑓 ∈ 𝐻. We have∑︁
𝑗∈J

𝑣2𝑗‖Θ𝑗𝜋𝑊𝑗
𝑓‖2 = ⟨𝑆Θ𝑓, 𝑓⟩ 6 ‖𝑆Θ‖‖𝑓‖2.

It follows that Θ := (𝑊𝑗,Θ𝑗, 𝑣𝑗)𝑗∈J is a g-fusion Bessel sequence for 𝐻.
Thus, we obtain, by the hypothesis,

‖𝑆Λ𝑓 − 𝑆Θ𝑓‖ 6 𝜆‖𝑆Λ𝑓‖ + 𝜇‖𝑆Θ𝑓‖ + 𝛾
(︀∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑤𝑗
𝑓‖)2

)︀ 1
2 .

Therefore, by (3),

‖𝑓 − 𝑆Θ𝑆
−1
Λ 𝑓‖ 6 𝜆‖𝑓‖ + 𝜇‖𝑆Θ𝑆

−1
Λ 𝑓‖ + 𝛾

(︁∑︁
𝑗∈J

𝑣2𝐽‖Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ 𝑓‖2

)︁ 1
2
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6
(︁
𝜆 +

𝛾√
𝐴

)︁
‖𝑓‖ + 𝜇‖𝑆Θ𝑆

−1
Λ 𝑓‖.

Since 0 6 max{𝜆 + 𝛾/
√
𝐴, 𝜇} < 1, then, by Lemma 1, 𝑆Θ𝑆

−1
Λ and conse-

quently 𝑆Θ is invertible, and we get

‖𝑆−1
Θ ‖ 6 ‖𝑆−1

Λ ‖‖𝑆Λ𝑆
−1
Θ ‖ 6 1 + 𝜇

𝐴
(︀
1 − (𝜆 + 𝛾√

𝐴
)
)︀ .

So, the proof is completed. �

Corollary 1. The optimal lower and upper bounds of Θ defined in The-
orem 8 are ‖𝑆−1

Θ ‖−1 and ‖𝑆Θ‖, respectively.

Corollary 2. Let Λ be a g-fusion frame for 𝐻 with bounds 𝐴,𝐵 and
{Θ𝑗 ∈ ℬ(𝐻,𝐻𝑗)}𝑗∈J be a sequence of operators. If there exists a constant
0 < 𝑅 < 𝐴 such that∑︁

𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓 − 𝜋𝑊𝑗

Θ*
𝑗Θ𝑗𝜋𝑊𝑗

𝑓‖ 6 𝑅‖𝑓‖

for all 𝑓 ∈ 𝐻, then Θ := (𝑊𝑗,Θ𝑗, 𝑣𝑗)𝑗∈J is a g-fusion frame for 𝐻 with
bounds

𝐴−𝑅 𝑎𝑛𝑑 min{𝐵 + 𝑅

√︂
𝐵

𝐴
,𝑅 +

√
𝐵}.

Proof. It is easy to check that
∑︀
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓 converges for any

𝑓 ∈ 𝐻. Thus, we obtain, for each 𝑓 ∈ 𝐻,∑︁
𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓 − 𝜋𝑊𝑗

Θ*
𝑗Θ𝑗𝜋𝑊𝑗

𝑓‖ 6 𝑅‖𝑓‖ 6

6
𝑅√
𝐴

(︀∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2

)︀ 1
2

and also∑︁
𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Θ*

𝑗Θ𝑗𝜋𝑊𝑗
𝑓‖ 6 𝑅‖𝑓‖ +

∑︁
𝑗∈J

𝑣2𝑗‖𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓‖ 6

6 (𝑅 +
√
𝐵)‖𝑓‖.

By using Theorem 8 with 𝜆 = 𝜇 = 0 and 𝛾 = 𝑅√
𝐴
, the proof is completed.�
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The following is another version of perturbation of g-fusion frames.

Theorem 9. Let Λ be a g-fusion frame for 𝐻 with bounds 𝐴,𝐵 and
{Θ𝑗 ∈ ℬ(𝐻,𝐻𝑗)}𝑗∈J be a sequence of operators, such that for any finite
subset I ⊆ J and for each {𝑓𝑗}𝑗∈J ∈ H2,⃦⃦∑︁

𝑗∈I

𝑣𝑗
(︀
𝜋𝑊𝑗

Λ*
𝑗𝑓𝑗 − 𝜋𝑊𝑗

Θ*
𝑗𝑓𝑗

)︀⃦⃦
6 𝜆

⃦⃦∑︁
𝑗∈I

𝑣𝑗(𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗)
⃦⃦

+

+ 𝜇
⃦⃦∑︁

𝑗∈I

𝑣𝑗(𝜋𝑊𝑗
Θ*

𝑗𝑓𝑗)
⃦⃦

+ 𝛾
(︀∑︁

𝑗∈I

⃦⃦
𝑓𝑗
⃦⃦2)︀ 1

2 ,

where 0 6 max{𝜆 + 𝛾/
√
𝐴, 𝜇} < 1. Then Θ := (𝑊𝑗,Θ𝑗, 𝑣𝑗)𝑗∈J is a g-fusion

frame for 𝐻 with bounds

𝐴
(︁1 −

(︀
𝜆 + 𝛾√

𝐴

)︀2
1 + 𝜇

)︁
𝑎𝑛𝑑 𝐵

(︁1 + 𝜆 + 𝛾√
𝐵

1 − 𝜇

)︁2

.

Proof. Let {𝑓𝑗}𝑗∈J ∈ H2; then⃦⃦∑︁
𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Θ*

𝑗𝑓𝑗‖ 6
⃦⃦∑︁

𝑗∈I

𝑣𝑗
(︀
𝜋𝑊𝑗

Λ*
𝑗𝑓𝑗−𝜋𝑊𝑗

Θ*
𝑗𝑓𝑗

)︀⃦⃦
+
⃦⃦∑︁

𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗
⃦⃦
6

6 (1 + 𝜆)
⃦⃦∑︁

𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗
⃦⃦

+ 𝜇
⃦⃦∑︁

𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Θ*

𝑗𝑓𝑗
⃦⃦

+ 𝛾
(︀∑︁

𝑗∈I

⃦⃦
𝑓𝑗
⃦⃦2)︀ 1

2 .

Hence,⃦⃦∑︁
𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Θ*

𝑗𝑓𝑗
⃦⃦
6

1 + 𝜆

1 − 𝜇

⃦⃦∑︁
𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗
⃦⃦

+
𝛾

1 − 𝜇

(︀∑︁
𝑗∈I

‖𝑓𝑗‖2
)︀ 1

2 6

6
(︁1 + 𝜆

1 − 𝜇

√
𝐵 +

𝛾

1 − 𝜇

)︁(︁∑︁
𝑗∈I

⃦⃦
𝑓𝑗
⃦⃦2
)︁ 1

2
.

Let

𝑇Θ : 𝐻 −→ H2,

𝑇Θ{𝑓𝑗}𝑗∈J =
∑︁
𝑗∈I

𝑣𝑗𝜋𝑊𝑗
Θ*

𝑗𝑓𝑗.

Therefore, 𝑇Θ is well-defined and bounded. Then, by Theorem 1, Θ is a
g-fusion Bessel sequence. Suppose that 𝐺 := 𝑇Θ𝑇

*
Λ𝑆

−1
Λ . Then we get, by
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the hypothesis and (4) for 𝑓𝑗 := Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ 𝑓 ,

‖𝑓 −𝐺𝑓‖ 6 𝜆‖𝑓‖ + 𝜇‖𝐺𝑓‖ + 𝛾
(︁∑︁

𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ 𝑓‖2

)︁ 1
2
6

6
(︀
𝜆 +

𝛾√
𝐴

)︀
‖𝑓‖ + 𝜇‖𝐺𝑓‖.

Since 0 6 max{𝜆 + 𝛾√
𝐴
, 𝜇} < 1, by Lemma 1, 𝐺 and, consequently, 𝑇Θ𝑇

*
Λ

are invertible and
‖𝐺−1‖ 6 1 + 𝜇

1 − (𝜆 + 𝛾√
𝐴

)
.

Now, let 𝑓 ∈ 𝐻, and we have

‖𝑓‖4 = |⟨𝐺𝐺−1𝑓, 𝑓⟩|2 =
⃒⃒⟨︀∑︁

𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Θ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ (𝐺−1𝑓), 𝑓

⟩︀⃒⃒2
6

6
∑︁
𝑗∈J

‖Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ (𝐺−1𝑓)‖2.

∑︁
𝑗∈J

𝑣2𝑗‖Θ𝑗𝜋𝑊𝑗
𝑓‖2 6

6 𝐴−1‖𝐺−1𝑓‖2
∑︁
𝑗∈J

𝑣2𝑗‖Θ𝑗𝜋𝑊𝑗
𝑓‖2.

This completes the proof. �

Theorem 10. Let Λ be a g-fusion frame for 𝐻 with bounds 𝐴,𝐵 and
{Θ𝑗 ∈ ℬ(𝐻,𝐻𝑗)}𝑗∈J be a sequence of operators. If there exists a constant
0 < 𝑅 < 𝐴 such that∑︁

𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓 − Θ𝑗𝜋𝑊𝑗

𝑓
)︀
‖2 6 𝑅‖𝑓‖2

for all 𝑓 ∈ 𝐻, then Θ := (𝑊𝑗,Θ𝑗, 𝑣𝑗)𝑗∈J is a g-fusion frame for 𝐻 with
bounds

(
√
𝐴−

√
𝑅)2 𝑎𝑛𝑑 (

√
𝑅 +

√
𝐵)2.

Proof. Let 𝑓 ∈ 𝐻. We can write

‖{𝑣𝑗Θ𝑗𝜋𝑊𝑗
𝑓}𝑗∈J‖2 6 ‖{𝑣𝑗Θ𝑗𝜋𝑊𝑗

𝑓 − 𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓}𝑗∈J‖2+

+ ‖{𝑣𝑗Λ𝑗𝜋𝑊𝑗
𝑓}𝑗∈J‖2 6 (

√
𝑅 +

√
𝐵)2‖𝑓‖2

and also

‖{𝑣𝑗Θ𝑗𝜋𝑊𝑗
𝑓}𝑗∈J‖2 > ‖{𝑣𝑗Λ𝑗𝜋𝑊𝑗

𝑓}𝑗∈J‖2−‖{𝑣𝑗Θ𝑗𝜋𝑊𝑗
𝑓−𝑣𝑗Λ𝑗𝜋𝑊𝑗

𝑓}𝑗∈J‖2 >
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> (
√
𝐴−

√
𝑅)2‖𝑓

⃦⃦2
.

This complete the proof. �
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