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1. Introduction. Let D = {z ∈ C : |z| < 1} denote the open unit
disk, and let B denote the set of all bounded analytic functions defined
on D, such that |f(z)| 6 1 for all z ∈ D. Then the classical inequality of
Bohr [8] is the following:

Theorem A. Let f ∈ B, with Taylor series f(z) =
∞∑
n=0

anz
n. Then we

have
∞∑
n=0

|an|rn 6 1 for all r 6
1

3
, (1)

where r = |z|.

Actually, Herald Bohr obtained in 1914 inequality (1) for 06 r61/6.
The sharp version of the theorem in the above form was proved inde-
pendently by M. Riesz, I. Schur, and F. Wiener. Other proofs were also
given in [19]. Boas and Khavinson [7], and Aizenberg [3], [2] have ex-
tended the inequality to several complex variables. In [16], Kayumov
et al. investigated the Bohr radius for complex-valued locally univalent
harmonic mappings. Inspired by the work of [16], Evdoridis et al. [10]
established several improved versions of Bohr’s inequality for harmonic
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mappings. In [13], Kayumov and Ponnusamy discussed the Bohr radius
for bounded symmetric functions and settled, in particular, the conjecture
of Ali et al. [4] on the Bohr radius for the class of bounded odd functions.
In [5], Alkhaleefah et al. discussed Bohr’s inequality with a fixed zero
coefficient and introduced the study of the Bohr phenomenon for quasi-
subordination family of functions. We refer the reader to the recent survey
by Abu Muhanna, et al. [1], and the references therein. More informa-
tion about generalizations and extensions of Bohr’s result can be found
in [18], [19] and in the following recent papers [4], [5], [10], [12–17]. More-
over, in [20], [21], the authors considered the problem of determining the
Bohr radius in an improved form, for functions having multiple zeros at
the origin. For the point of view of function spaces, we refer to [6], [9] and
the references therein. Bohr’s phenomenon has been investigated in dif-
ferent contexts, e.g., holomorphic functions of several complex variables.
Since this paper deals with the classical case only, we pay attention to and
cite references related to this setting.

One of important proofs of Bohr’s inequality was given by Wiener, (see
also [18, p. 495] and [11, p. 162]), and the following coefficient inequality
plays the key role.

Theorem B. [8] Suppose that f ∈ B, with Taylor series f(z) =
∞∑
n=0

anz
n.

Then
|an| 6 1− |a0|2 for all n > 1. (2)

Note that, for all |a0| 6 1, we have 1−|a0| 6 1−|a0|2; so, we introduce
the following subset B′ of the set B:

Definition 1.

B′ = {f : f ∈ B with |an| 6 1− |a0| for all n ∈ N}. (3)

There is another good reason to consider the subfamily B′. In 2004,
Aizenberg and Vidras (see [3, p. 736]) considered a subclass of B and
proved the following theorem:

Theorem C. Let f ∈ B, such that the Taylor coefficients amn = 0 for a
given m > 1 and all n > 1. Then

|an| 6 1− |a0| for all n > 1.
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In this paper, we investigate and prove Bohr’s inequality for functions
f ∈ B′ and, also, for sense-preserving K-quasiconformal harmonic map-
pings of the form f = h + g, such that |g′(z)| 6 k|h′(z)| in the unit disc,
for k = K−1

K+1
∈ [0,1] and h ∈ B′.

2. Bohr radius for a special family of analytic functions. In
this section, we find the Bohr radius for a family of bounded analytic
functions B′ and show its sharpness.

Theorem 1. Let f(z) =
∞∑
n=0

anz
n ∈ B′. Then

∞∑
n=0

|an|rn 6 1 for all r 6
1

2
, (4)

where r = |z|, and the constant 1/2 cannot be improved.

Proof. Suppose that f ∈ B′, |a0| = a and |z| = r. By the assumptions,

∞∑
n=0

|an|rn = a+
∞∑
n=1

|an|rn 6 a+
∞∑
n=1

(1− a)rn = a+
(1− a)r
1− r

, (5)

which is, clearly, less than or equal to 1, provided that

r

1− r
6 1, i. e. r 6

1

2
,

and the first part of the theorem is completed.
To show that the constant 1

2
is the best possible, let a = |a0| ∈ (0, 1)

and consider the function

f(z) =
a− (1− a+ a2)z

1− az
= a− (1− a)

∞∑
n=1

an−1zn, z ∈ D.

A simple calculation shows that

|f(z)| 6 |f(eiθ)| 6 1 for 0 6 θ 6 2π,

whenever

2a cos θ − (2− a+ a2) 6 0,
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which holds for all a ∈ [0, 1] and θ ∈ [0, 2π]. Thus, |f(z)| 6 1 for all z ∈ D.
As for the function above, note that

|an| = (1− a)an−1 6 1− a, for all n > 1.

So f ∈ B′. Now, for this function, we have
∞∑
n=0

|an|rn = a+ (1− a)
∞∑
n=1

an−1rn = a+ (1− a) r

1− ar
,

which is less than or equal to 1 if r
1−ar 6 1, i. e., if r 6 1

1+a
. By making

a→ 1, the proof of the theorem is completed. �

Remark 1. By substituting |a0|2 instead of |a0| in the left-hand side of
(5), we get

|a0|2 +
∞∑
n=1

|an|rn 6 1 for all r 6
1− |a0|2

2− |a0| − |a0|2
=

1 + |a0|
2 + |a0|

.

Also, observe that

inf
0<|a0|<1

1 + |a0|
2 + |a0|

=
1

2
;

however, the sharpness is still an open problem. Moreover, if we substitute
|a0|m instead of |a0| in (5) for a fixed m ∈ N\{1}, we get

|a0|m +
∞∑
n=1

|an|rn 6 1 for all r 6
1− |a0|m

2− |a0| − |a0|m
=

1 +
m−1∑
k=1

|a0|k

2 +
m−1∑
k=1

|a0|k
.

Again, we see that

inf
0<|a0|<1

1 +
m−1∑
k=1

|a0|k

2 +
m−1∑
k=1

|a0|k
=

1

2
.

and, thus, the sharp Bohr radius remains open in this case, too.

Corollary 1. Suppose that f ∈ B, and let SN(f, z) =
N∑
n=0

anz
n denote

the partial sum of f , such that

|SN(f, z)| 6 1 for all N ∈ N.



Bohr phenomenon 7

Then
∞∑
n=0

|an|rn 6 1 for all r 6
1

2
, (6)

Proof. The proof of this corollary follows from a result of Paulsen et
al. [18]. For the reader’s convenience, we include it in the form of a
proposition below. �

Proposition 1. [18] For any complex polynomial p(z) =
N∑
n=0

anz
n, with

|p(z)| 6 1 for all |z| < 1 and |aN | 6= 0, the following inequality holds:

|aN | 6 1− |a0|. (7)

Example. Consider the function

f(z) =
a− (1− a+ a3)z

1− a2z
= a− (1− a)z

∞∑
n=1

a2(n−1)zn−1, z ∈ D,

where a ∈ [0, 1]. This function f belongs to the class B, because

|f(z)| 6 |f(eiθ)| 6 1 for all 0 6 θ 6 2π,

if

2(a2 + a− 1) cos θ − (1 + a)(2− 2a+ a3) 6 0,

which holds for all a ∈ [0, 1] and θ ∈ [0, 2π]. The partial sum of this
function is

SN(f, z) = a− (1− a)z
N∑
n=1

a2(n−1)zn−1 =

=
a− (1− a+ a3)z + a2N(1− a)zN+1

1− a2z
.

Note that the inequality |SN(f, eiθ)| 6 1 holds for N > 1 and θ ∈ [0, 2π],
since the following inequality holds:

a− (1− a+ a3)eiθ + a2N(1− a)ei(N+1)θ 6 1− a2eiθ; (8)

this means that
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2(a2 + a− 1) cos θ − (1 + a)(2− 2a+ a3) + a4N−1(1− a)+
+ 2a2N−1

(
a cos ((N + 1)θ)− (1− a+ a3) cos(Nθ)

)
6 0. (9)

Let ψN(a, θ) be the expression in the left-hand side of the last inequal-
ity in (9). Note that a2 + a − 1 > 0 for a > 1

2
(
√
5 − 1) w 0.618034 and

1− a+ a3 > 0. Also note that when cos θ → 1 and cosNθ → −1, we get
cos(N + 1)θ → −1.

Now, using the observations above for a > 1
2
(
√
5 − 1) and a 6 1, we

conclude the following:

ψN(a,θ) 6 2(a2 + a− 1)− (1 + a)(2− 2a+ a3) + (1− a) +
+2(−a+ (1− a+ a3)) =

= −1− 3a+ 4a2 + a3 − a4,

which is less than or equal to zero for all 1
2
(
√
5 − 1) 6 a 6 1, so that

ψN(a, θ) 6 0 for all 1
2
(
√
5 − 1) 6 a 6 1; this means that inequality (9)

holds for N > 1, θ ∈ [0, 2π] and a ∈ [1
2
(
√
5 − 1), 1]. Thus, |SN(f, z)| 6 1

holds for all N > 1, z ∈ D, and a ∈ [1
2
(
√
5− 1), 1].

Also,

a+(1−a)r
∞∑
n=1

a2(k−1)rk−1 = a+(1−a) r

1− a2r
6 1 for all r 6

1

1 + a2
,

and, thus,

inf
1
2
(
√
5−1)6a61

1

1 + a2
= 0.5.

Corollary 2. Suppose that f ∈ B with the Taylor series f(z) =
∞∑
n=0

anz
n,

where amn = 0 for all n > 1 and a given m > 1. Then
∞∑
n=0

|an|rn 6 1 for all r 6
1

2
. (10)

Proof. We refer to Theorems 1 and C. �

3. Bohr radius for a special family of harmonic mappings. In
this section, we find the Bohr radius for the family of sense-preserving K-
quasiconformal harmonic mappings of the form f = h+ g, where h ∈ B′,
and show its sharpness.
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Theorem 2. Suppose that f(z) = h(z) + g(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnzn is

a harmonic mapping of the disk D, such that |g′(z)| 6 k|h′(z)| for some
k ∈ [0,1], and K = 1+k

1−k , where h ∈ B
′. Then

∞∑
n=0

|an|rn +
∞∑
n=1

|bn|rn 6 1 for all r 6 rK :=
K + 1

3K + 1
, (11)

where r = |z|, and the constant rK cannot be improved.

To prove this theorem, we need the following Lemma proved in [16].

Lemma. Let h(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n be two analytic func-

tions defined in D, such that

|g′(z)| 6 k|h′(z)|,

in D and for some k ∈ [0,1]. Then

∞∑
n=1

|bn|2rn 6 k2
∞∑
n=1

|an|2rn for all |z| = r < 1.

Now we return to the proof of Theorem 2.

Proof. Consider the harmonic function f = h + g, such that
|g′(z)| 6 k|h′(z)| in D, where k ∈ [0,1) and h ∈ B′. By Lemma and
the Cauchy-Schwarz inequality,

m∑
n=1

|bn|rn 6

√√√√ m∑
n=1

|bn|2rn

√√√√ m∑
n=1

rn 6

√√√√k2
m∑
n=1

|an|2rn

√√√√ m∑
n=1

rn 6

6

√√√√k2(1− |a0|)2
m∑
n=1

rn

√√√√ m∑
n=1

rn = k(1− |a0|)
m∑
n=1

rn,

Let m→∞ to get

∞∑
n=1

|bn|rn 6 k(1− |a0|)
∞∑
n=1

rn = k(1− |a0|)
r

1− r
,
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so that

|a0|+
∞∑
n=1

|an|rn +
∞∑
n=1

|bn|rn 6 |a0|+ (1 + k)(1− |a0|)
r

1− r
, (12)

which is less than or equal to 1, provided that

(1 + k)
r

1− r
6 1, i. e., r 6

1

2 + k
.

Substituting k = (K − 1)/(K + 1), we get
∞∑
n=0

|an|rn +
∞∑
n=1

|bn|rn 6 1 for all r 6
K + 1

3K + 1
.

This proves the first part of the theorem.
To show that the radius K+1

3K+1
is the best possible, let a = |a0| ∈ (0, 1)

and consider the function

f(z) = h(z) + g(z) = a− (1− a)z
1− az

− k
(
(1− a)z
1− az

)
=

= a− (1− a)
∞∑
n=1

an−1zn − k(1− a)
∞∑
n=1

an−1zn, z ∈ D,

where k = (K − 1)/(K + 1). Then it is very simple to see that

∞∑
n=0

|an|rn +
∞∑
n=1

|bn|rn = a+ (1− a)
∞∑
n=1

an−1rn + k(1− a)
∞∑
n=1

an−1rn =

=
a− a2r + (1 + k)(1− a)r

1− ar
,

which is bigger than or equal to 1 if and only if

r >
1

1 + a+ k
=

K + 1

2K + a(K + 1)
.

Since a could be chosen arbitrarily close to 1, we obtain that the radius
K+1
3K+1

cannot be improved. The proof of the theorem is completed. �

Remark 2. By Substituting |a0|2 instead of |a0| in the left-hand side of
(12), we get

|a0|2 +
∞∑
n=1

|an|rn +
∞∑
n=1

|bn|rn 6 1
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for all r with

r 6
1− |a0|2

2 + k − (1 + k)|a0| − |a0|2
=

1 + |a0|
2 + k + |a0|

.

We observe that

r = inf
0<|a0|<1

1 + |a0|
2 + k + |a0|

=
1

2 + k
=

K + 1

3K + 1
,

which is an upper bound for the Bohr radius, but the sharpness case is
still an open problem.

Moreover, if we substitute |a0|m instead of |a0| in (12) for a fixed
m ∈ N\{1}, we get

|a0|m +
∞∑
n=1

|an|rn +
∞∑
n=1

|bn|rn 6 1,

for all

r 6
1− |a0|m

2 + k − (1 + k)|a0| − |a0|m
=

1 +
m−1∑
j=1

|a0|j

2 + k +
m−1∑
j=1

|a0|j
.

Again, we see that

inf
0<|a0|<1

1 +
m−1∑
j=1

|a0|j

2 + k +
m−1∑
j=1

|a0|j
=

1

2 + k
=

K + 1

3K + 1

which is an upper bound for the Bohr radius in this case, too. And also,
the sharpness case is still an open problem.
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