
Probl. Anal. Issues Anal. Vol. 9 (27), No 3, 2020, pp. 131–136 131
DOI: 10.15393/j3.art.2020.8030

UDC 517.44, 517.51, 517.58

L. Matejı́čka

A SOLUTION TO FOURTH QI’S CONJECTURE
ON A COMPLETE MONOTONICITY

Abstract. In the paper, a complete monotonicity for some func-
tion is proved. This problem was posted by F. Qi and R.P. Agarwal
as the fourth open problem of the collection of eight unsolved prob-
lems.
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1. Introduction. First, recall some useful definitions and theorems.
The function ψ(x) = d ln Γ(x)/dx is called the digamma function, where
Γ(x) is the classical Euler’s Gamma function [4]. For additional informa-
tion on this function, please refer to [4] and the closely related references
therein.

A function f is said to be completely monotonic on the interval I, if
f(x) has derivatives of all orders on I and the inequality (−1)nf (n)(x) > 0
holds for x ∈ I and n ∈ N0. A characterization of a completely monotonic
function is given by the Bernstein-Widder theorem [5], [6]. It reads: a
function f(x) on (0,∞) is completely monotonic if and only if there exists
a bounded and non-decreasing function α(t), such that the integral

f(x) =

∞∫
0

e−xtdα(t)

converges for x ∈ (0,∞).
Let f(x) be completely monotonic on (0,∞) and f(∞)= lim

x→∞
f(x)>0.

Recall from the papers [2], [4] the following definition. Assume that the
function xr(f(x) − f(∞)) is completely monotonic on (0,∞) for some
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r ∈ R, while the function xr+ε(f(x) − f(∞)) is not (for any positive
number ε); then the number r is called the completely monotonic degree
of f(x) with respect to x ∈ (0,∞). The notation degx

cm[f(x)] denotes the
completely monotonic degree r of f(x) with respect to x ∈ (0,∞) [4].

In the paper [4], F. Qi and R. P. Agarwal posed eight open prob-
lems on complete monotonicity. The seventh open problem was solved by
Matej́ıčka in [3]. The fourth open problem says:

Open problem 1 Motivated by the results in [1], we guess that the differ-
ence between the right-hand and the left-hand sides of (2.5) (see [4, p. 6])
is a completely monotonic function on (0,∞).

Note that the left-hand side function h(x) is given by

∆(x) = (ψ′(x))2 + ψ′′(x) > h(x) =
1

2x4
− 1

x3
+

34

15x2
− 14

3x
+

14

3(x+ 1)
+

+
12

5(x+ 1)2
+

17

15(x+ 1)3
+

9

20(x+ 1)4
+

1

10(x+ 1)5
−

− 7

180(x+ 1)6
− 1

30(x+ 1)7
− 1

90(x+ 1)8
+

1

900(x+ 1)10
(1)

for x > 0, and the right-hand side function g(x) is given by

∆(x) = (ψ′(x))2 +ψ′′(x) < g(x) =
1

x4
− 1

x3
+

7

3x2
− 5

x+ 1
+

8

3(x+ 1)2
+

+
4

3(x+ 1)3
+

7

12(x+ 1)4
+

1

6(x+ 1)5
+

1

36(x+ 1)6
(2)

for x > 0.
In this paper, we often use the well-known Laplace-transform formulas

m!

xm+1
=

∞∫
0

tme−xtdt for x > 0, m ∈ N0,

m!

(x+ 1)m+1
=

∞∫
0

tme−te−xtdt for x > 0, m ∈ N0.

The goal of the paper is to find a solution of the fourth Open problem 1.
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2. Main Results.

Theorem 1. Let f(x) = g(x) − h(x) for x > 0, where h(x) and g(x)
are defined by (1) and (2), respectively. Then f(x) is a strictly completely
monotonic function on (0,∞).

Proof. Straightforward computation yields:

f(x) =
1

2x4
+

1

15x2
− 1

3x
+

1

(x+ 1)
+

4

15(x+ 1)2
+

1

5(x+ 1)3
+

+
2

15(x+ 1)4
+

1

15(x+ 1)5
+

1

15(x+ 1)6
+

1

30(x+ 1)7
+

+
1

90(x+ 1)8
− 1

900(x+ 1)10
(3)

for x > 0.
Using the well-known formulas

1

x1+n
=

∞∫
0

tn

n!
e−xtdt,

1

(x+ 1)1+n
=

∞∫
0

tn

n!
e−(1+x)tdt

in (3), we get

f(x) =

∞∫
0

[
t3

12
+

t

15
− 1

3
+ e−t

(1

3
+

4

15
t+

3

10
t2 +

2

15 · 3!
t3

+
1

15 · 4!
t4 +

1

15 · 5!
t5 +

1

30 · 6!
t6 +

1

90 · 7!
t7 − 1

900 · 9!
t9
)]

e−xtdt.

The proof will be done if we show that

p(t) = et
( t3

12
+

t

15
− 1

3

)
+

1

3
+

4

15
t+

3

10
t2 +

2

15 · 3!
t3 +

1

15 · 4!
t4+

+
1

15 · 5!
t5 +

1

30 · 6!
t6 +

1

90 · 7!
t7 − 1

900 · 9!
t9 > 0

for t > 0. There are two cases:

α) 0 < t 6 2,
β) 2 < t.



134 L. Matej́ıčka

Consider the case α). It is easy to see that

1

90 · 7!
t7 − 1

900 · 9!
t9 >

1

90 · 7!
t7
(

1− 4

720

)
> 0

for 0 < t 6 2. The proof of the case α) will be done if we prove

r(t) = et
( t3

12
+

t

15
− 1

3

)
+

1

3
+

4

15
t+

3

10
t2 > 0

for 0 < t 6 2.
Straightforward computation gives:

r′(t) = et
( t3

12
+
t2

4
+

t

15
− 4

15

)
+

4

15
+

3

5
t,

r′′(t) = et
( t3

12
+
t2

2
+

17t

30
− 1

5

)
+

3

5
,

and
r′′′(t) = et

( t3
12

+
3t2

4
+

47t

30
+

11

30

)
.

From r′′′(t) > 0, r′′(0) = 2/5 > 0, r′(0) = 0 we obtain r(t) > 0 for
0 < t 6 2.

Now consider the case β). For t > 2, it is easy to see that

t3

12
+

t

15
− 1

3
>

1

2
> 0.

Using the elementary inequality, get

et > 1 + t+
t2

2
+
t3

6
+
t4

4!
+
t5

5!
+
t6

6!
,

The proof of the case β) will be done if we prove that

q(t) =
(

1 + t+
t2

2
+
t3

6
+
t4

4!
+
t5

5!
+
t6

6!

)
·
( t3

12
+

t

15
− 1

3

)
+

+
1

3
+

4

15
t+

3

10
t2 +

2

15 · 3!
t3 +

1

15 · 4!
t4 +

1

15 · 5!
t5 +

1

30 · 6!
t6+

+
1

90 · 7!
t7 − 1

900 · 9!
t9 > 0

for t > 2.
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By direct computation, we obtain that

q(t) =
37799 · t9

326592000
+

t8

1440
+

809 · t7

226800
+

101 · t6

7200
+

19 · t5

450
+
t4

12
+
t3

12
+
t2

5
> 0;

this completes the proof. �
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dean of FPT TnUAD, Slovakia, for his kind grant support. The work was
supported by VEGA grants No. 1/0589/17, No. 1/0649/17, No. 1/0185/19,
No. 1/0348/20, No. 1/0026/20 and by Kega grant No. 007 TnUAD-4/2017,
No. 002 TnUAD-4/2019.

References
[1] B. -N. Guo, J. -L. Zhao and F. Qi, A completely monotonic function in-

volving the tri- and tetra-gamma functions, Math. Slovaca 63 (2013), no. 3,
vol. 469478. DOI: https://doi.org/10.2478/s12175-013-0109-2.

[2] B. -N. Guo and F. Qi, On the degree of the weighted geometric mean as
a complete Bernstein function, Afr. Mat. 26, 2015, no. 7, pp. 1253 – 1262.
DOI: https://doi.org/10.1007/s13370-014-0279-2.
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