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SOME NEW GENERALIZATIONS OF HADAMARD-TYPE
MIDPOINT INEQUALITIES INVOLVING
FRACTIONAL INTEGRALS

Abstract. In this study, we formulate the identity and obtain
some generalized inequalities of the Hermite-Hadamard type by
using fractional Riemann—Liouville integrals for functions whose
absolute values of the second derivatives are convex. The results
are obtained by uniformly dividing a segment [a,b] into n equal
sub-intervals. Using this approach, the absolute error of a Mid-
point inequality is shown to decrease approximately n? times. A
dependency between accuracy of the absolute error (¢) of the up-
per limit of the Hadamard inequality and the number (n) of lower
intervals is obtained.
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1. Introduction. The well-known definition of a convex function in
literature (for example, [4] and references therein) is

Definition 1. The function g : [a,b] — R is said to be convex, if

g+ (1 -1)¢) <tg(§)+(1—1)g(C) (1)

for all £,¢ € [a,b] and t € [0, 1].

It is well known that the double Hermite-Hadamard-type inequality
plays a very important role in nonlinear analysis. This inequality is stated
as follows [§]:

Theorem 1. Let g : [ C R — R be a convex function defined on an
interval I and let a,b € I, with a < b; then the following double inequality
holds:
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b

o(“50) < = [ atere < 40720

a

The theory of fractional integro—differential calculus, as an extension
of classical analysis, plays an important role in pure and applied science.
A. M. Nakhushev describes in the monograph [14] the fundamental ele-
ments and qualitatively new properties of fractional calculus operators.
Moreover, their application to solving problems of mathematical model-
ing of various complex systems and processes (in living and non-living
systems) has a fractal structure. Butkovsky et al. [3] presented the his-
tory of the development of fractional calculus and a detailed analysis of
the problems of using fractional integro-differential calculus to describe
dynamics of various systems and control processes. Examples of physical
systems in need of the fractional analysis theory are presented.

In the literature, there are various definitions of the fractional integral
(for example, see [13], [15]), but the Riemann-Liouville definition is among
the most widely used in many applications of fractional calculus.

Definition 2. [11] Let g € Ly [a,b]. The Riemann—Liouville integrals
J& g and J* g of order a > 0 are defined, respectively, by

&
1 .
T (©) :(—/< —0 g, x>a
and
b
Jtg ( / g(t)dt, r<b
3
where I' (o) = [ e “u* " du is the well known Gamma function. Here, for
0

a=0,Jlg(§)=J-g(§) =g(§) and fora =1
b
Thg©)= g€ = [le)de
The vast majority of studies on the theory of integral inequalities use

two classical inequalities. This is the Hdélder’s inequality and its other
form: the power-mean inequality:
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Theorem 2. (The Holder inequality [12]). Let p > 1 and % + % =1. If
u(§) and v(§) are real functions, defined on [a,b], and |ulP, |v|? € L|a, b],

then:
/\u o)lde < /|u (€ de)” /\v ra). e

This inequality turns into equality if and only 1fA|g( )|P = Blg(§)]? almost
everywhere; A and B are constants.

Theorem 3. (Power mean inequality [12]). Let ¢ > 1 and * + 2 =1.1If
u(§) and v(&) are real functions, defined on [a, b], and if |u|?, \v]q G Lla, b,

then:
1 b 1
/|u )] de < /|u Nag)*( [ru@ieorae). ©

In the recent years, many authors (see [1|, [5-7], [10-13], [15] and
references therein) have studied Hermite-Hadamard type inequalities in-
volving fractional integrals for improvements and generalizations. In these
papers, new inequalities for functions from various convexity classes were
obtained. For example, in [5], [9], [16], some new Hadamard-type integral
inequalities were obtained for functions whose first derivatives are convex
functions and take values at the intermediate points of the integration
interval.

In this study, using the identity formulated for fractional integrals, we
obtain some new generalizations of the Hadamard type inequalities for
functions whose absolute values of the second derivatives are convex. In
addition, the obtained results clarify the errors of the quadrature formula
for the numerical integration.

2. Main Results. Let n € N and a,b € R and let a < b, n > 1. The

interval [a,b] with a uniform step h = =2 is divided into n subintervals

la,b] = U [&k—1,&], where & =a+ih,i=0,1,2,....n
k=1
Lemma 1. Let g: I C R — R be a twice differentiable function on I°;

I° is the interior of I. If " € L[a,b], where a,b € I, then Yo > 1 the
following equality holds:

a—2 n
2D S [ atnn) + Iy (e - Zg (6) =

k=1
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2a—2h2 n
= (Iig + Iox) , (4)
« k=1
where
b— _
h= “, & =a+ih, i=0,1,2,.. .n, ek:%,
Z/Yfagﬂ (1 —1t) &y +t&) dt
:/ ) g (1= ) €y +1€,) dt
0.5

Proof. Integrate the integrals under the sum operator twice by parts and
take into account that h = &, — &1 to get

0.5

/tagl/ (1 —1) &1 + t&) dt
0

0.5
O{

2ah9 /tall (1 —1) &1 +t&) dt

0
00 ag (0) 7

(8] O{Oé—
:gzii]: _25—1;2 /ta 9 (=1 G + 860) dt
0

Similarly, for the second integral:

1

Ik :/(1—75)0‘9”((1—?5)&1+t£k) it =

0.5
1

0+ [ e e -

0.5

g () g (k) a a— 1
2¢h 20~ 1h2

(1 —1t)&pq +t&) dt

1
0.5
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By summing these integrals, we get:

Ly, + Iy, = —Q(I,L%Qg (Or) + %X
0.5 1
x[/fwaul—wfmy+%wﬁ+/af¢f2g«1—wsmy+%Mﬁ.
0 0.5

If we make a change of variables (1 — t) &_1 + t&. = z in the last equality,
we get

L + Io, = —ﬁg (Or) + %x
Qk a—2 fk a—2
o [/ (1’—&};)_1 g(x)d:ch/ (§k—zl_l Q(JU)dx] _
Ek—1 0y
DI —
= g 0 + L= ety ) + (6]

Multiply both sides of the last equality by (2 k2 ) and take into account
the Gamma-function property:

2972p?2 29721 (v
(L1 + Iox) = —g (0k) + MTE)X

x [J%_lg(ék_1)+J%_19(§k) . (5)

By summing both sides of (5) over k, we obtain (4). The proof is com-
plete. UJ

Remark. If we choose n = 1, then from (4) we get the equality in [1]
(equality (2) for m = 1).

Theorem 4. Let g:1 C R — R be twice differentiable function on I°.
If ¢" € Lla,b], where a,b € I and |¢"| is a convex function; then the
following inequality holds Vo > 1:

a—2 n
Qha—liﬁo‘)Z[Jg Yg(ge-1) + T 9(6)| - Zg (65)

k=1

\

n

<%éjﬁgw¢@ﬁHM%MLm)
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where h = n,@ a+1th,i=0,1,2,...,n and 0, = Sho1te 1+€’“

Proof. From Lemma 1, by using the triangle inequality, we obtain

2T Zn: [Jg‘{lg(ﬁkfl) + J;jglg(&)] -

ha—l
k=1
- Z g (k)

Since the |¢”|, the function is convex; using inequality (1) for the first
integral, we get

ga— 2h2 n
< ([l + 2kl) - (7)
k=1

1/2

\[1k| = ' /tagﬁ((l — 1) &1 +t§k)dt‘ <
0
1/2 1/2

< 19" (€) / 19(1 — t)dt + |g"(&)| / 4t
0 0

Calculating these integrals, we get

a+3 i 1 1
11| < (05 1) (a1 2) 2072 19" (§k—1)] +m\g (&) -

Similarly, for the second integral, we write

(8)

[ L] = ‘ 199" (1 — )&y + t&)dt| <
1£
1 " a—+3 "
s (o +2) 2042 97 (&)l + (4 1) (a + 2)20+2 19" (&) (9)

By summing the relevant sides of inequalities (8) and (9), we get:

1
i+ 1l < gy 19/l I (10)

(a+
By multiplying both sides of the inequality (10) by the expression
# and by summing over k, we get

S (1l V) < ey o (6 + g6 (1)

k=1 k=1
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By taking (7) and (11) into account, we obtain (6). The proof is
completed. [

Corollary 1. If we choose a = 2, then from (6), we get the inequality

where

b
b—a)?
/g d{['— y17y27"'7yn) < (4877,2) A(Zl,ZQ,...,Zn), (12)

@‘

—a

A(.,.) — arithmetic mean of n real numbers,
ye =9 (), 2e = 19" (G- + 19" (&), k=1,2,...,n

Proof. For a = 2, for the left-hand side of the inequality (6), we get

)1

‘%ip 9(8—1) + Jg-9( fk} Zg (0r)

k=1

Ok fk —1

- ‘bfa Zn: [ / g(x)dx+/g(x)dx] — ::Og(Qk) =

k=1 k-1 O

For the right-hand side of the inequality (6), we write

ﬁ ; (19" (&) + 19" (&) =
= (b4gni)2 > [(|g//(€k71)’ + ’9”(&@)”] . (14)

By taking into account the equalities (13) and (14) from (6), we obtain

< S ) + 19 E0D)

b
‘b— / dx—Zg (0r)
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By dividing both sides of the last inequality by n, we obtain (12). The
proof is complete. [J

Remark. It is easy to verify that if we choose n = 1 and o = 2, then,
from (12), we get the inequality

Pr / s -9 “50)| < L 1o @1 o, )

This inequality was obtained by M. Sarikaya et al. (see [17, Proposition 1])
for convex functions.

Proposition 1. If the absolute error € is given, then the following in-

equality holds for n:
b—a [lg"l
> | == |
" [ 2 6e

where ||g"[| = sup,ejau 19" (%)] -
Proof. Indeed, from the right-hand side of the inequality (14), we have

Sl (6l + 1" ()l < 2 am gy = 48 g

k=1
(16)
—‘ . The proof is complete. [

ba)

: b—a /llg”l
Since 5,5 llg gl

! H 2 6e

és,wegetn}{

Remark. If ||g"| = sup,c(, 4 |9"(2)|, then it follows from inequality (15)

that
b
1 a+b (b—a)*  ,
— <

and from (12), taken into account inequality (16), we get

n

]bia/bg@)dx—gzlgwk)

(b—a)”
g 24n2 Hg”H -

These two inequalities show that when the interval is divided into n sub-
intervals, the error of an Hadamard-type inequality decreases n? times.
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Remark. Let R(g,h) be the error estimation of the Midpoint rule of nu-
merical integration; then from (12) we obtain the well-known error esti-
mate [2]:

b—

Rig.h) = ~“1 "]

Theorem 5. Let g: I C R — R be a twice differentiable function on I°.
If " € La,b], where a,b € I and | ¢"|? is a convex function, then, for all
a>1,¢q=1andt € (0,1), the following inequality holds:

a—2 n
Zha—rga)z [J;;_lg(gk‘—l) o Lg (& ] ZQ Or)

k=1

\

h2
<—— SR, (7
8a (a+1) ; g )

where

h:

b— .
e —a+4ih,i=0,1,2, ... .0, ek:%,

a4+ 1) |g"(E-1)|" + (a +3) |g" (&)
&_{ 2(a+2) }*
(o +3) 9" (Ee—)|” + (o + 1) |g"(&)|*] 7
i [ 2(a+2) ]

Proof. From Lemma 1, we obtain, by using the triangle inequality,

a—2 n
2ha—rga>z [J%_lg(ﬁk—l) o L9 (& ] Zg (Or)

k=1
9a—2p2 n-1
S, kz_o(|[1k|+’[2k|)- (18)

By using the well-known Power-mean integral inequality (3) and since

| ¢"|* is a convex function, we get

1/2 1/2 )

1—
[ Lk| = ’ 9" (1 =) &1 + &) dt’ < ( tadt> "
j j

0
1/2 1/2 .

X [‘gn(fkl)\q/to‘(l —t)dt + \g”(gk”q/taﬂdt} T

0 0
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- {W} [<a+1> <a1+2>2a+2}

1

Y [<a £3) 19" (E )+ (ot 1) |g"<5k>|q} g

Simplifying the last statement, we get:

1 +3 " 5 B q+ +1 i é— q %
‘[1k| < (a+1>2a+1 |:(Oé )’g ( k212‘a+§? )‘g ( k)| :| (19>
Note that

1

il =| [ =019 = s + )| =
1/2

1/2

— ’ /t"‘g”(tﬁkﬂ +(1-— t)fk)dt‘;
0

so, similarly to the first integral, we can write down an inequality for Io:

1 {(a + D 19" (&-0)I" + (o +3) [g"(&)I*
(v + 1) 2041 2(a+2)

]é. (20)

| Tok| <

Summing the relevant sides of the inequalities (19) and (20), we get

1

Ji Ly < ————
| 1k|+’ 2k| (a+1)2a+1

Ey.

Multiplying both sides of the last inequality by the expression 22—

summing over k, and taking into account (18), we obtain (17). The proof
is completed. [

Corollary 1. Taking o = 2, we obtain, from (17):

b
1
‘b_a/g(x)dx_A(ylay%ayn) < —

where

A(.,.) — arithmetic mean of n real numbers,
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o o1+ &k
N 2

i~ | Se ) " LR 3

Yr =9 (Ok), Ok , k=1,2,....n,

8 8

Here we get (12) for g = 1.
Remark. Taking o =2 and n =1, we get, from (17):

b
1 a+b (b—a)?
- <
‘b—a/g<x)dx 9(% )‘\ s <

where

3lg"(a)|" +5 |g"<b>q v {5 9" (@[" + 319" B

F =
1[ 8 8

This inequality for convex functions has been obtained by M. Sarikaya,
N. Aktan, and the author (see [17, Proposition 5]).

Theorem 6. Let g: I C R — R be a twice differentiable function on I°.
If " € La,b], where a,b € I and | g"|? is a convex function, then, for all
a,q and p > 1, such that % + % =1, the following inequality holds:

2°720(@) = T e o .
2 S [ et + g ae0)] - Y060 | <
k=1 k=1
h? 1 1
< , (22
16« (aq—q+3) ;Wk (22)
where
b— _
=T e atin =012, O = TS
n 2
Wi = [0 9" (&—0)|" + 1g"(€)I"] * + 19" (& )" + 9 |g" (&[],
g_lo—atd
qa —q+ 2

Proof. From Lemma 1, we obtain, using the triangle inequality:
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a—2F n n
2RSS [ gt + g a)] — a6 | <
k=1 k=1
2a72h2 n
S, ;(|]1k|+|12k|>- (23)

Using the well-known Holder integral inequality (2) and since | g”|? is a
convex function, we get

1/2
Tyl — ' [ed - +t5k>dt\ _
0
1/2
= ' / trtat®g" (1 —1) &y +t§k)dt’ <
0
1/2 i 1/2 1/2 .
< ( / (ti)pdt) ' {|g"<5k_1>|q [eema-nay@r [ tqa-q”dt} '
0 0 0

W

([ T\? 1 ‘ qu—q+4, , , .
N (5) {(qa—q+3)2qaq+3] {qa—q+2 9" (&r-1)I" + 19" (&x)] ] :

Given the fact that

1\ > 1 i1 1 a
2 (qav — q + 3)200—a+3| 202 \ ga — ¢ + 3

we can write an inequality for I1y:

Q|

1 1 % " q " q
1l € s (g ) WGP @) 2

Since
1
| = 1 [ -na+i dt\ _
1/2
1/2

_ ‘ /to‘g” (t 1 + (1 — 1) &) dt],

0
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we can write an inequality for Iox, similarly to the first integral:

1 1 ? " q " q 1
tal € oz (oo ) G 40l 29

Summing the relevant sides of the inequalities (24) and (25), we get

1 1 a
1 I < - Wi
il 11l < gz (g )W
ga—2p2

by multiplying both sides of the last inequality by the expression =—-,
summing over k, and taking into account (23), we obtain (22). The proof
is completed. []

Corollary. Note that % =1- %. Choose a = 2; then we get from (22):

b
1
’b_a/g(‘r)dx_A(yhyQ’Jyn) <

(b—a)’

gV (@ AL W, W), (26)

where

A(.,.) — arithmetic mean of n real numbers,

Sk—1 + &k 1\
=g (0 0, =>—"— k=12... = ——
Yk g( k)v k 9 ) ) &y , 1, w(Q) q+3 )

G+l + lgeor + L eor|

Wy = |12

Here % < (q) < 1forallqg > 1, since lim ¥ (q) = L and lim  (q) = 1.

g—1t 4 g—+00

For ¢ — 17, we get (15) from (26).
3. Some Applications To The Special Means. Let us consider
some special means for two real numbers o and f.

1) Arithmetic mean : A(a, 8) = a—;ﬁ§

2) Quadratic mean : Q(«, B) = \/a? + %
3) Logarithmic mean : L(c, 5) b >0 and a#p;

T mpma’
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4) Generalized logarithmric mean :

if a=p,

«,
Lofo,B) =y B — o™ if a#B,neZt.

(n+1)(8—-a)

Now, by using the results, we will give some applications to special
means of positive real numbers.

Proposition 2. Let g(x) = v/1+ 22; then Yz € [0,b] the following in-
equality holds:

1 1
A[Q (b,1), Eln (2A (b, Q (b, 1)))] - %A (Y1, Y25+ Un) | <
b2
< o5 AL QP01 200 A (1 by )]

where ye = Q[(2k —1)b,2n] , k=1,2,....n,

tn = Q7 (msz,nQ), m=1,2,....,n—1,

n is the number of subintervals of the interval [0, b].

Proof. This inequality follows from Corollary 1.
Indeed, for the left-hand side of inequality (12) with a = 0, we obtain:

b b
VIT In(b++1+402

bia/g(x)d;c:%/,/inzdx: 12+ +n(+2b+ ):

a 0
- 200 nEARRED) _ i{ow. gmiapeen);
as & =a+i=%=i2i=0,1,2,...,n,

AT =R Sk—1+ &k 2_\/(2k—1)2b2+4n2_

yk—g(T)—\/l-i-( 5 ) = o =

_ %Q (2% — 1)b, 2n] .
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As ¢"(z) = W on the right-hand side (12), we get:
b? 1
A(z1, 20, -y 2n) [ + ]:
2 1E2r 3 3/2 3/2
15 i (&0 + ) SRR

1
1
48713[ 2_:( k2b2+n2 3/2>+(b2+1)3/2] -

B2 FEo
~ 48n 3[1+Q (b, 1) + 2n ,;ZIQ (kb,n)} =
b? L .
B 16n3A{1’Q <b71)’2n A(t17t27...7tn1)1.

Here 21, = |¢"(&—1)| + 19" (&)| and ¢, = Q73 (kbn). O

Proposition 3. Let g(z) = e* and let the interval [a,b] be divided into
n subintervals; then Yz € [a,b], the following inequality holds:

b 2
‘L(e“,eb) —eaA(yl,yg,...,yn)‘ < (24 (Z) EA(t1,ty, ... t,),

where

n
3 5\ 1/5 .3
e{ 1 n) G )|
tyy =M™ Vh m=12...n

Proof. This inequality follows from Corollary 1. Indeed, for the left-hand
side of the inequality (21) we get:

1 1 b_ _a
b_a/g(l’)dﬂU: 2 /ezdxz eb © = L(en, ),
and, Since&:ajtih,h:b_Ta,z'zo,l,Q,...,n,

1+ @ h
Y=g (fk 12 fk) — pot(2hDh
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Since ¢"(x) = €®, we can write for the right-hand side of the inequality

(21),
1
r o |319"(€ )|q+5\g” Se-)['] 7 [519" (€T + 319" (@I | 7 _
g 8
30 a+kh)q+5e(a+(k Dh)q7 Belatkh)a | 3o(a+(k—1)h)g 3
o — ] e

— plat(k=1)h) 3¢ +5 %+ Behd + 37 _
8 8
1 1
_ o 3e¢ht 4574 N 5eh 1 374 e
8 8
3 5! 5) 3
o o (e

Thus, A(Fy, Fo, ..., F,) =2e"- E- A(ty,ts,...,t,). O

1]

2]
13l

4]

[5]

(6]
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