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ON FINDING THE RESULTANT OF TWO ENTIRE
FUNCTIONS

Abstract. Using Newton’s recurrent formulae, we find the pro-
duct of values of an entire function of one variable in zeroes of
another entire function. This allows to answer whether they have
common zeros. By that, we propose an approach to construction
of the resultant of two entire functions. We also give examples
illustrating the main result.
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1. Introduction. The classical resultant R (f, g) of two polynomi-
als f and g may be defined variously: using the Sylvester determinant
(see e. g. [1], [10], [16]), the product formula R (f, g) =

∏
{x: f(x)=0}

g (x)

(see [1], [10], [16]), or the Bezout-Caley approach (see [9]).
In this paper, we give a constructive approach to define a resultant of

two entire functions of one complex variable using the product formula.
Our choice is justified by the fact that entire functions are the direct
generalization of polynomials.

In a series of papers (see [4–6], [8], [15]) various authors proposed gen-
eralizations for the resultant of analytic functions in the ring of matrix-
valued functions, meromorphic functions on Riemann surfaces, for systems
of algebraic and transcendent equations. In all these investigations, it is
assumed that the number of zeroes and poles is finite. In our case, func-
tions may have infinite number of zeroes but instead we need to employ
the limit procedure.

The interest to this problem is explained by the fact that many mathe-
matical models require studying non-algebraic equations and systems, for
example, equations of chemical kinetics often use exponential polynomi-
als [2].
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The first step in defining the resultant of two entire functions was
done in [11], where authors studied the case of an entire function and a
polynomial (or an entire function with a finite number of zeroes). The
conditions for an entire function to have a finite number of zeroes were
studied in [12]. The paper [13] generalizes the results of [11] to the case
when one of entire functions satisfies some strict conditions, but may have
infinite number of zeroes.

Our approach allows to determine if entire functions have common ze-
roes without computing the zeroes. Our formulae for the resultant involve
power sums of roots, which may be found by Newton’s formulae without
finding the zeroes.

2. A cubic polynomial and an entire function. To begin with,
we consider a cubic polynomial f(z) and a polynomial g(z) of degree n:{

f(z) = a0 + a1z + a2z
2 + z3,

g(z) = b0 + b1z + b2z
2 + . . .+ bnz

n.
(1)

Denote the roots of f (z) by z1, z2, z3. Then the resultant R (f, g) of f and
g is computed as

R(f, g) =
3∏
i=1

g(zi) = g(z1) · g(z2) · g(z3) =
n∑
k=0

b3k(z1z2z3)
k+

+
n∑
s=0

n∑
t=s+1

(z1z2z3)
s(bsb

2
t [(z1z2)

t−s + (z1z3)
t−s + (z2z3)

t−s]+

+ b2sbt[z
t−s
1 + zt−s2 + zt−s3 ])+

+
n∑
s=0

n∑
t=s+1

n∑
p=t+1

bsbtbp(z1z2z3)
s[zp−s1 zt−s2 + zp−s2 zt−s1 + zp−s1 zt−s3 +

+ zp−s3 zt−s1 + zp−s2 zt−s3 + zp−s3 zt−s2 ]. (2)

Note that the expressions in zj’s in these sums are symmetric polynomials.
This means that they can be expressed via the coefficients of f(z), however,
we rewrite them using the power sums of the roots:

Sk = zk1 + zk2 + zk3 , k ∈ N.

If necessary, Sk’s may be rewritten via the elementary symmetric poly-
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nomials ej’s of the roots:
e1 = z1 + z2 + z3,

e2 = z1 · z2 + z1 · z3 + z2 · z3,
e3 = z1 · z2 · z3,

using the Newton-Girard formula (see, e. g., [3], [7, formula 8]):

Sk =
∑

r1+2r2+...+krk=k,
r1,r2,...,rk>0

(−1)k k(r1 + . . .+ rk − 1)!

r1! · . . . · rk!

k∏
i=1

(−ei)ri . (3)

Viete’s formulae allow to rewrite these in terms of the coefficients of f(z).
It is easy to see that

zk1z
l
2 + zl1z

k
2 + zk1z

l
3 + zl1z

k
3 + zk2z

l
3 + zl2z

k
3 = Sk · Sl − Sk+l, k, l ∈ N. (4)

and
(z1z2)

k + (z1z3)
k + (z2z3)

k =
1

2

(
S2
k − S2k

)
.

Therefore, the expression (2) becomes

R =
3∏
i=1

g(zi) =
n∑
k=0

b3k(−a0)k+

+
n∑
s=0

n∑
t=s+1

(−a0)s
(
1

2
bsb

2
t

(
S2
t−s − S2t−2s

)
+ b2sbtSt−s

)
+

+
n∑
s=0

n∑
t=s+1

n∑
p=t+1

bsbtbp(−a0)s [St−s · Sp−s − St+p−2s] . (5)

Thus, we arrive at the first result:

Theorem 1. The resultant R (f, g) of the polynomials (1) is given by (5).

Passing to the limit as n → ∞ in (5), we get the result for a system
consisting of a cubic polynomial and an entire function.

Theorem 2. Let g (z) be an entire function in one complex variable and

g (z) = b0 + b1z + b2z
2 + . . .+ bnz

n + . . . ,
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be its series expansion, and let f (z) be a cubic polynomial as in (1). Then
the resultant R (f, g) is given by

R (f, g) =
∞∑
k=0

b3k(−a0)k+

+
∞∑
s=0

∞∑
t=s+1

(−a0)s
(
1

2
bsb

2
t

(
S2
t−s − S2t−2s

)
+ b2sbtSt−s

)
+

+
∞∑
s=0

∞∑
t=s+1

∞∑
p=t+1

bsbtbp(−a0)s [St−s · Sp−s − St+p−2s] ,

provided the series in the right-hand side converges absolutely.

3. A case of two polynomials. Consider a system of two equations
consisting of two polynomials of degrees m and n{

f(z) = a0 + a1z + a2z
2 + a3z

3 + . . .+ am−1z
m−1 + zm,

g(z) = b0 + b1z + b2z
2 + . . .+ bnz

n.
(6)

The case m = 2 has been considered in [14], and the case m = 3 has been
considered above.

Denote the roots of f (z) by z1, z2, . . . , zm (there may be multiple roots
among them). And Sk are there power sums of order k. Elementary but
cumbersome calculations show that

m∏
i=1

g(zi) = G1 +G2 + . . .+Gi + . . .+Gm, (7)

where each Gi consists of several multiple sums. Namely,

G1 =
n∑
s=0

(−1)msas0bms ,

G2 =
n∑
s=0

n∑
t=s+1

(−1)msas0bm−1s btSt−s+

+
n∑
s=0

n∑
t=s+1

(−1)msas0bm−2s b2t

(
S2
t−s − S2t−2s

2

)
+

+
n∑
s=0

n∑
t=s+1

(−1)msas0bm−3s b3t

(
S3
t−s − 3S2t−2s · St−s + 2S3t−3s

4

)
+
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+
m−1∑
l=4

n∑
s=0

n∑
t=s+1

(−1)msas0bm−ls blt

(
Slt−s − lSt−s · S(l−1)(t−s) + (l − 1)Sl(t−s)

2l−1

)
,

G3 =
n∑
s=0

n∑
t=s+1

n∑
p=t+1

(−1)msas0bm−2s btbp (St−s · Sp−s − St+p−2s)+

+
n∑
s=0

n∑
t=s+1

n∑
p=t+1

(−1)msas0bm−3s b2t bp×

×

(
S2
t−s · Sp−s − S2t−2s · Sp−s − 2St+p−2s · St−s + 2S2t+p−3s

2

)
+

+
n∑
s=0

n∑
t=s+1

n∑
p=t+1

(−1)msas0bm−3s btb
2
p×

×

(
S2
p−s · St−s − S2p−2s · St−s − 2St+p−2s · Sp−s + 2S2p+t−3s

2

)
+

+
m−1∑
l=4

∑
β1+β2=l
β1>1, β2>1

n∑
s=0

n∑
t=s+1

n∑
p=t+1

(−1)msas0bm−ls bβ1t b
β2
p ×

×

(
Sβ2p−s · S

β1
t−s − β2Sp−s · Sβ1(t−s)+(p−s)(β2−1)−

2l−2

−β1St−s · Sβ2(p−s)+(t−s)(β1−1) + (β1 + β2 − 1)Sβ1(t−s)+β2(p−s)
)
,

G4 =
n∑
s=0

n∑
t=s+1

n∑
p=t+1

n∑
r=p+1

(−1)msas0bm−3s btbpbr×

× (St−s · Sp−s · Sr−s − St+p−2s · Sr−s − St+r−2s · Sp−s−

− Sp+r−2s · St−s + 2Sp+t+r−3s)+

+
m−1∑
l=4

∑
β1+β2+β3=l

β1>1, β2>1, β3>1

n∑
s=0

n∑
t=s+1

n∑
p=t+1

n∑
r=p+1

(−1)msas0bm−ls bβ1t b
β2
p b

β3
r ×

×

(
Sβ1t−s · S

β2
p−s · S

β3
r−s − β1St−s · Sβ2(p−s)+β3(r−s)+(β1−1)(t−s)−

2l−3
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−β2Sp−s ·Sβ1(t−s)+β3(r−s)+(β2−1)(p−s)−β3Sr−s ·Sβ1(t−s)+β2(p−s)+(β3−1)(r−s)+

+(β1 + β2 + β3 − 1)Sβ1(t−s)+β2(p−s)+β3(r−s)
)
.

If we denote the summation indices by α1, α2, . . . , αm and differences of
indices by j2 = α2 − α1, j3 = α3 − α1, . . . , jm = αm − α1, then

Gm =
n∑

α1=0

n∑
α2=α1+1

n∑
α3=α2+1

. . .
n∑

αm=αm−1+1

(−1)mα1aα1
0 b

m−(m−1)
α1

bα2 . . . bαm×

×

(
m∏
k=2

Sjk −
m∑
k=2

Sjk · Sj2+...+jk−1+jk+1+...+jm + (m− 2)Sj2+j3+...+jm

)
.

Remark. If f (z) is a polynomial of degree m, then Gm consists of one
m-tuple sum.

Theorem 3. The resultant R (f, g) of the system of polynomials (6) is
given by (7).

The proof follows easily by induction over m with the base for m = 3.

4. A general case. For the general case, it is enough to pass to the
limit as n and m tend to infinity.

Theorem 4. Let f(z) and g(z) be entire functions of one complex vari-
able

f (z) = a0 + a1z + a2z
2 + . . .+ amz

m + . . . ,

g (z) = b0 + b1z + b2z
2 + . . .+ bnz

n + . . . .

Then the resultant R (f, g) is given by formula (7), where we pass to the
limit as n and m tend to infinity. The function f(z) must be transformed
to the form (6) by dividing it on am.

We suggest also another approach to obtain these formulae, which is
more convenient for algorithmic realization. Let

f (z) = a0 + a1z + a2z
2 + . . .+ zm,

g (z) = b0 + b1z + b2z
2 + . . .+ bnz

n + . . . .
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Denote the roots of f (z) by z1, . . . , zm. Then the resultant R (f, g) of f
and g is

R =
m∏
i=1

g(zi) =

( ∞∑
j1=0

bj1z
j1
1

)
. . .

( ∞∑
jm=0

bjmz
jm
m

)
. (8)

Each term in this product is in one-to-one correspondence with a point
of Zn>. To group all the terms into symmetric polynomials, we subdivide
Zn> into cones. In fact, due to symmetry, it is enough to describe only one
cone containing exactly one monomial from each symmetric polynomial
in (8). For this, we denote the standard base vectors of Zn by e1, . . . , en
and define vectors

vk =
k∑
j=1

ej, j = 1, . . . , n.

These vectors generate the required simplicial cone. The faces of this
cone always intersect; to avoid this, we consider the following sets of inte-
ger points lying in partially closed cones:

σ0 = Z>vn;

σk1 = Z>vn + Z>vk, k = 1, . . . , n− 1;

σk
2 = Z>vn + Z>vk1 + Z>vk2 , k = (k1, k2), k1, k2 = 1, . . . , n− 1, k1 6= k2;

. . .

σn = Z>vn + Z>v1 + · · ·+ Z>vn−1.

A point ξ of any of these sets encodes a monomial

bξz
ξ = bξ1 . . . bξnz

ξ1
1 . . . zξnn .

Each set σ from the list above produces the series∑
α∈σ

bα Sym(zα), (9)

where Sym(zα) is the sum of elements of the orbit of zα under the action
of the symmetric group

Sym(zα) =
∑

p is a permutation

zp(α).
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For example, σ0 gives the series

∞∑
s=0

bs·vn Sym(zs·vn) =
∞∑
s=0

bns (z1 . . . zn)
s

and σ1
1

∞∑
s=0

∞∑
t=1

bs·vn+t·v1 Sym(zs·vn+t·v1) =

=
∞∑
s=0

∞∑
t=1

bs+tb
n−1
s (zs+t1 zs2 . . . z

s
n + · · ·+ zs1z

s
2 . . . z

s+t
n ) =

=
∞∑
s=0

∞∑
t=1

bs+tb
n−1
s (z1 . . . zn)

s(zt1 + . . .+ ztn).

The symmetric polynomials in each series (9) can be expressed via
coefficients of f and power sums of its roots by standard procedures of
computer algebra systems or by formulae from [3]. Summing up over all
σ from the list and passing to the limit as m tends to infinity, we obtain
the result of Theorem 4, provided that all the series converge absolutely.

5. Examples. In this section, we consider examples that demon-
strate the main results of the paper, as well as examples leading to com-
putation of some earlier unknown sums of multiple series. These results
are of independent interest. We begin with a simple example illustrating
Theorem 1, where we compute all the quantities in formula (5).
Example 1. Consider the system of equations (n = 2){

f (z) = z (z − 1) (z + 1) = z3 − z,
g (z) = (z − 2) (z + 2) = z2 − 4.

In this case,

a0 = 0, a1 = −1, a2 = 0, b0 = −4, b1 = 0, b2 = 1.

Then formula (5) takes the form

R (f, g) =
2∑

k=0

b3k(−a0)k+
2∑
s=0

2∑
t=s+1

(−a0)s
(1
2
bsb

2
t

(
S2
t−s − S2t−2s

)
+b2sbtSt−s

)
+
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+
2∑
s=0

2∑
t=s+1

2∑
p=t+1

bsbtbp(−a0)s [St−s · Sp−s − St+p−2s] .

Since a0 = 0, we get only terms that correspond to k = 0 and s = 0 in
these sums, that are:

R (f, g) = b30 +
2∑
t=1

(
1

2
b0b

2
t

(
S2
t − S2t

)
+ b20btSt

)
+

+
2∑
t=1

2∑
p=t+1

b0btbp [St · Sp − St+p] .

Since b1 = 0, the one-dimensional sum has only summands for t = 2 and
the double sum has no non-zero terms. Thus,

R (f, g) = b30 +
1

2
b0b

2
2

(
S2
2 − S4

)
+ b20b2S2.

We find the power sums of the roots S2 and S4 without using the roots
themselves, but just formulae (3) and Viete’s formulae. In our case

S2 = 2, S4 = 2.

Thus, R (f, g) = −36.
Example 2. Consider the system of equations{

f(z) = z3 − a3,
g(z) = b0 + b1z + b2z

2 + . . .+ bnz
n.

This example demonstrates Theorem 1. According to the notation
introduced above,

z1 = a, z2,3 =
−a± a

√
3i

2
.

We have 
e3 = z1z2z3 = a3,

e2 = z1z2 + z1z3 + z2z3 = 0,

e1 = z1 + z2 + z3 = 0.

The expressions Sk are distinct from zero only if k is a multiple of 3,
and then they are equal to

Sk = zk1 + zk2 + zk3 = 3ak.
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For such k, we get

(z1z2)
k + (z1z3)

k + (z2z3)
k =

1

2

(
S2
k − S2k

)
= 3a2k.

Thus, by (5) we have
3∏
i=1

g(zi) =
n∑
s=0

b3sa
3s +

n∑
s=0

[n−s
3

]∑
j=1

a3s
(
3bsb

2
s+3ja

6j + 3b2sbs+3ja
3j
)
+

+
n∑
s=0

n∑
t=s+1

n∑
p=t+1

bsbtbpa
3s [St−s · Sp−s − St+p−2s] .

In the last expression, the triple sum is distinct from zero only if either
both lower indices are multiples of 3, or they are not but their sum is.
Example 3. Consider the systemf(z) = z3 − a3,

g(z) = ebz =
∞∑
n=1

(bz)n

n!
= 1 + bz + (bz)2

2!
+ . . .+ (bz)n

n!
+ . . . .

Using Theorem 2, we get
3∏
i=1

g (zi) =

=
∞∑
k=0

(ab)3k

(k!)3
+
∞∑
s=0

∞∑
j=1

a3s
(
3

b3s+6j

s!(s+ 3j)!2
a6j + 3

b3s+3j

s!2(s+ 3j)!
a3j
)
+

+
∞∑
s=0

∞∑
t=s+1

∞∑
p=t+1

bsbtbpa
3s [St−s · Sp−s − St+p−2s] = 1.
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