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Abstract. Here first we derive a general reverse Minkowski inte-
gral inequality. Then motivated by the work of E.R. Love [4] on
integral inequalities we produce general reverse and direct integral
inequalities. We apply these to ordinary and left fractional integral
inequalities. The last involve ordinary derivatives, left Riemann-
Liouville fractional integrals, left Caputo fractional derivatives, and
left generalized fractional derivatives. These inequalities are of
Opial type.
Key words: Minkowski integral inequality, Opial inequality, Rie-
mann-Liouville fractional integral, fractional derivatives.
2010 Mathematical Subject Classification: 26A33, 26D10,
26D15.

1. Introduction. This paper deals with ordinary and left fractional
integral inequalities. We are motivated by the following results:

Theorem 1. (Hardy’s Inequality, integral version [3, Theorem 327]) If f
is a complex-valued function in Lr (0,∞), ‖ · ‖ is the Lr (0,∞) norm and
r > 1, then ∥∥∥1

x

x∫
0

f (t) dt
∥∥∥ 6 r

r − 1
‖f‖ . (1)

Theorem 2. [4] If s > r > 1, 0 6 a < b 6 ∞, γ is real, ω (x) is
decreasing and positive in (a, b), f (x) and H (x, y) are measurable and
non-negative on (a, b), H (x, y) is homogeneous of degree −1,

(Hf) (x) =

x∫
a

H (x, y) f (y) dy (2)
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and

‖f‖r =

( b∫
a

f (x)r xγ−1ω (x) dx

) 1
r

, (3)

then
‖Hf‖r 6 C ‖f‖s , (4)

where

C =

1∫
a
b

H (1, t) t−
γ
r

( bt∫
a

xγ−1ω (x) dx

) 1
r
− 1
s

dt. (5)

Here a
b
is to mean 0 if a = 0 or b = ∞ or both; and bt is to mean ∞ if

b =∞.

An application of Theorem 2 follows:

Theorem 3. [4] If p > 0, q > 0, p + q = r > 1, 0 6 a < b 6 ∞, γ < r,
ω (x) is decreasing and positive in (a, b), f (x) is measurable and non-
negative on (a, b), Iα is the left Riemann-Liouville operator of fractional
integration defined by

(Iαf) (x) =

x∫
a

(x− t)α−1

Γ (α)
f (t) dt for α > 0, (6)

I0f (x) = f (x), where Γ is the gamma function, and Iβf is defined simi-
larly for β > 0, then

b∫
a

[(Iαf)(x)]p[(Iβf)(x)]qxγ−αp−βq−1ω(x)dx 6 C

b∫
a

f(x)rxγ−1ω(x)dx, (7)

where

C =

(
Γ
(
1− γ

r

)
Γ
(
α + 1− γ

r

))p( Γ
(
1− γ

r

)
Γ
(
β + 1− γ

r

))q. (8)

Also Theorem 2 implies Theorem 1 (by [4]), just take a = 0, b = ∞,
γ = 1, s = r > 1, ω (x) = 1 and H (x, y) = 1

x
.

2. Main Results. We start with a general result, see also [2].

Theorem 4. (Reverse Minkowski integral inequality) Let (X,A, µ) and
(Y,B, ν) be σ-finite measure spaces and let 0 < p < 1. Here f is a
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nonnegative function on X × Y with f (x, y) > 0 for almost all x ∈ X,
almost all y ∈ Y and

∫
Y

(f (x, y))p dν (y) <∞ for almost all x ∈ X.

Then(∫
Y

(∫
X

f (x, y) dµ (x)
)p
dν (y)

) 1
p

>
∫
X

(∫
Y

(f(x, y))p dν(y)
) 1
p
dµ(x),

(9)
if left-hand side is finite.

Proof. Notice that
∫
X

f (x, y) dµ (x) > 0, for almost all y ∈ Y and

∫
Y

(∫
X

f (x, y) dµ (x)
)p
dν (y) > 0.

We observe that ∫
Y

(∫
X

f (x, y) dµ (x)
)p
dν (y) =

=

∫
Y

[(∫
X

f (x,y) dµ (x)
)(∫

X

f (x′, y) dµ (x′)
)p−1]

dν (y) =

=

∫
Y

[ ∫
X

f (x, y)
(∫
X

f (x′, y) dµ (x′)
)p−1

dµ (x)

]
dν (y) =

(by Tonelli’s theorem)

=

∫
X

[ ∫
Y

f(x, y)
(∫
X

f (x′, y) dµ (x′)
)p−1

dν (y)

]
dµ (x) >

(by applying the reverse Hölder’s inequality in the inside we get)

>
∫
X

[(∫
Y

(f(x, y))pdν(y)
) 1
p
(∫
Y

(∫
X

f(x′, y)dµ(x′)
)p
dν(y)

) p−1
p

]
dµ(x)

(10)

=

[ ∫
X

(∫
Y

(f(x, y))pdν(y)
) 1
p
dµ(x)

][ ∫
Y

(∫
X

f(x, y)dµ(x)
)p
dν(y)

] p−1
p

.
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Finally, divide both ends of (10) by
[ ∫
Y

( ∫
X

f (x, y) dµ (x)
)p
dν (y)

] p−1
p
> 0

to obtain (9). �

We continue with a reverse analog of Theorem 2. The proof involves
a special kind of variation of reverse Minkowski integral inequality which
we establish completely.

We present

Theorem 5. Let 0 < r < 1, 0 < a < b < ∞, f (x) and H (x, y) are
measurable and non-negative on (a, b), (a, b)2, respectively, H (x, y) is ho-
mogeneous of degree −1,

(Hf) (x) =

x∫
a

H (x, y) f (y) dy, (11)

and suppose that

‖Hf‖r,[a,b] =
( b∫
a

(Hf) (x)r dx
) 1
r
<∞, (12)

and ‖f‖r,[a,b] is defined similarly.
We assume thatH (1, t) f (x, t) > 0, for almost all t ∈

[
a
x
, 1
]
, for almost

all x ∈ [a, b], and H(1,t)

t
1
r
‖f‖r,[a,bt] <∞, for almost all t ∈

[
a
b
, 1
]
.

Then

‖Hf‖r,[a,b] >
1∫

a
b

H (1, t)

t
1
r

‖f‖r,[a,bt] dt. (13)

Proof. For a < x < b the homogeneity of degree −1 of H gives

(Hf) (x) =

1∫
a
x

H (x, xt) f (xt)xdt =

1∫
a
x

H (1, t) f (xt) dt,

where t = y
x
. As a 6 y 6 x, then 0 < t 6 1. We will prove first (0 < r < 1)

‖Hf‖r,[a,b] =

( b∫
a

( 1∫
a
x

H (1, t) f (xt) dt
)r
dx

) 1
r

> (14)
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>

1∫
a
b

( b∫
a
t

H (1, t)r f (xt)r dx
) 1
r
dt = (∗) .

Indeed we observe that
b∫

a

( 1∫
a
x

H (1, t) f (xt) dt
)r
dx =

b∫
a

( 1∫
0

χ[ a
x
,1] (t)H (1, t) f (xt) dt

)r
dx =

(where χ is the characteristic function)

=

b∫
a

{( 1∫
0

χ[ a
x
,1](t)H(1, t)f(xt)dt

)( 1∫
0

χ[ a
x
,1](t

′)H(1, t′)f(xt′)dt′
)r−1}

dx

=

b∫
a

{ 1∫
0

χ[ a
x
,1] (t)H (1, t) f (xt)

( 1∫
0

χ[ a
x
,1] (t

′)H (1, t′) f (xt′) dt′
)r−1

dt

}
dx

(by Tonelli’s theorem)
=

1∫
0

{ b∫
a
t

χ[ a
x
,1] (t)H(1, t)f(xt)

( 1∫
0

χ[ a
x
,1] (t

′)H(1, t′)f(xt′)dt′
)r−1

dx

}
dt =

=

1∫
a
b

[ b∫
a
t

H (1, t) f (xt)
( 1∫

a
x

H (1, t′) f (xt′) dt′
)r−1

dx

]
dt >

(by reverse Hölder’s inequality applied inside)

>

1∫
a
b

[( b∫
a
t

H(1, t)f(xt)rdx
) 1
r
( b∫
a

( 1∫
a
x

H(1, t′)f(xt′)dt′
)r
dx
) r−1

r

]
dt = (15)

=

( 1∫
a
b

( b∫
a
t

(H (1, t) f (xt))r dx
) 1
r
dt

)( b∫
a

( 1∫
a
x

H (1, t) f (xt) dt
)r

dx

) r−1
r

.

Clearly here, by the assumptions, it holds
b∫
a

( 1∫
a
x

H (1,t) f (xt) dt
)r

dx > 0 and

all we did they make sense.
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Finally, we divide both ends of (15) by
( b∫
a

( 1∫
a
x

H(1, t)f(xt)dt
)r
dx
) r−1

r
> 0, to

validate (14), which is a particular case of a reverse Minkowski type integral
inequality.

By (14) we continue

(∗) =
1∫
a
b

H (1, t)

t
1
r

( b∫
a
t

f (xt)r tdx
) 1
r
dt =

1∫
a
b

H (1, t)

t
1
r

( bt∫
a

f (y)r dy
) 1
r
dt = (16)

=

1∫
a
b

H (1, t)

t
1
r

‖f‖r,[a,bt]dt,

proving (13). �

We give a reverse left fractional inequality.

Corollary 1. (to Theorem 5) Let 0 < r < p with r < 1, 0<a< b<∞,
f is measurable and non-negative on (a, b) such that f (x) > 0 almost ev-
erywhere on [a, b]. Here Iα is the left fractional Riemann-Liouville integral
operator of order α > 0, defined by

(Iαf) (x) =

x∫
a

(x− t)α−1

Γ (α)
f (t) dt, I0f (x) = f (x) , (17)

∀ x ∈ [a, b], and suppose that ‖x−αIαf (x)‖r,[a,b] < ∞. We assume that
‖f‖r,[a,bt] <∞, for almost all t ∈

[
a
b
, 1
]
. Then

b∫
a

(Iαf(x))p(f(x))r−px−αpdx >
1

Γ(α)p

( 1∫
a
b

(1− t)α−1

t
1
r

‖f‖r,[a,bt]dt
)p
‖f‖r−pr .

(18)

Proof. In Theorem 5, let H (x, y) =
(x− y)α−1

xαΓ (α)
for x > y > a and α > 0,

which is homogeneous of degree −1. Then (Hf) (x) = x−αIαf (x), and so
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by (13)

‖Hf‖r,[a,b] >
1∫

a
b

H (1,t)

t
1
r

‖f‖r,[a,bt] dt =
1

Γ (α)

1∫
a
b

(1− t)α−1

t
1
r

‖f‖r,[a,bt] dt.

(19)
Here 0 < r < p, hence 0 < r

p
< 1, also r

r−p < 0, and f (x) > 0 almost
everywhere in [a, b]. Next we apply the reverse Hölder’s inequality:

b∫
a

(
x−α (Iαf) (x)

)p
(f (x))r−p dx >

>

( b∫
a

(
x−α (Iαf) (x)

)r
dx

) p
r
( b∫

a

(f (x))r dx

) r−p
r

=

= ‖Hf‖pr,[a,b] ‖f‖
r−p
r

(19)
>

1

Γ (α)p

( 1∫
a
b

(1− t)α−1

t
1
r

‖f‖r,[a,bt] dt
)p
‖f‖r−pr ,

(20)
proving the claim. �

Next we present a reverse Opial type [5] inequality.

Corollary 2. (to Corollary 1) Let 0 < r < p with r < 1, m ∈ N,
0 < a < b <∞, f : [a, b]→ R such that f (m−1) is an absolutely continuous
function over [a, b], where f (a) = f ′ (a) = ... = f (m−1) (a) = 0, and f (m) is
non-negative, with f (m) (x) > 0 almost everywhere over [a, b]. We assume
that ‖x−mf (x)‖r,[a,b] <∞, and ‖f (m)‖r,[a,bt] <∞, a.e. for t ∈

[
a
b
, 1
]
. Then

b∫
a

(f (x))p
(
f (m) (x)

)r−p
x−mpdx >

>
1

((m− 1)!)p

( 1∫
a
b

(1− t)m−1

t
1
r

‖f (m)‖r,[a,bt]dt
)p
‖f (m)‖r−pr . (21)

Proof. By Taylor’s formula with integral remainder we have

f (x) =

x∫
a

(x− t)m−1

(m− 1)!
f (m) (t) dt =

(
Imf (m)

)
(x) , ∀ x ∈ [a, b] (22)
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then apply Corollary 1 for f (m). �

We need

Definition 1. Let α > 0, n = dαe (d·e is the ceiling), f ∈ ACn ([a, b])
(i.e. f (n−1) is absolutely continuous function). The left Caputo fractional
derivative is given by

Dα
∗af (x) =

1

Γ (n− α)

x∫
a

(x− t)n−α−1 f (n) (t) dt (23)

and exists almost everywhere for x in [a, b], D0
∗af = f , see [1, p. 394].

We mention

Corollary 3. [1, p. 395] Let α > 0, n = dαe, f ∈ ACn ([a, b]), and
f (k) (a) = 0, k = 0, 1, . . . , n− 1. Then

f (x) =
1

Γ (α)

x∫
a

(x− t)α−1Dα
∗af (t) dt = IαDα

∗af (x) , ∀ x ∈ [a, b] . (24)

We give a reverse left fractional Opial type [1] inequality.

Corollary 4. (to Corollary 1) Let 0 < r < p with r < 1, 0 < a < b <∞,
α>0, n=dαe, f ∈ ACn([a, b]), and f (k)(a) = 0, k=0, 1, . . . ,n−1. Assume
here thatDα

∗af is non-negative over (a,b) such thatDα
∗af > 0 almost every-

where on [a, b]. Suppose that ‖x−αf (x) ‖r,[a,b] <∞ and ‖Dα
∗af‖r,[a,bt] <∞,

for almost all t ∈
[
a
b
,1
]
. Then

b∫
a

(f (x))p (Dα
∗af (x))r−p x−αpdx >

>
1

Γ (α)p

( 1∫
a
b

(1− t)α−1

t
1
r

‖Dα
∗af‖r,[a,bt] dt

)p
‖Dα
∗af‖

r−p
r . (25)

Proof. By Corollaries 1, 3, see also (23). �

We need
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Definition 2. [1, pp. 7-8] Let ν > 0, n := [ν] [·] the integral part, and
α := ν − n (0 < α < 1); x, x0 ∈ [a, b] ⊂ R such that x > x0, x0 is fixed.
Let f ∈ C ([a, b]) and define

(Jx0ν f) (x) :=
1

Γ (ν)

x∫
x0

(x− t)ν−1 f (t) dt, x0 6 x 6 b, (26)

the left Riemann-Liouville integral. We define the subspace Cν
x0

([a, b]) of
Cn ([a, b]) :

Cν
x0

([a, b]) :=
{
f ∈ Cn ([a, b]) : Jx01−αD

nf ∈ C1 ([x0, b])
}
. (27)

For f ∈ Cν
x0

([a, b]) we define the left generalized ν-fractional derivative of
f over [x0, b] as

Dν
x0+

f := DJx01−αf
(n) (f (n) := Dnf). (28)

Notice Dν
x0+

f ∈ C ([x0, b]) .

We also need

Theorem 6. [1, from Theorem 2.1, p. 8] Let f ∈ Cν
x0

([a, b]), x0 ∈ [a, b]
fixed.

1) If ν > 1, and f (i) (x0) = 0, i = 0, 1, . . . , n − 1, then
f (x) =

(
Jx0ν D

ν
x0+

f
)

(x), all x ∈ [a, b] : x > x0.
2) If 0 < ν < 1, then f (x) =

(
Jx0ν D

ν
x0+

f
)

(x), all x ∈ [a, b] : x > x0.

That is, in both cases we have

f (x) =
1

Γ (ν)

x∫
x0

(x− t)ν−1
(
Dν
x0+

f
)

(t) dt, x0 6 x 6 b. (29)

If x0 = a, we get

f (x) =
1

Γ (ν)

x∫
a

(x− t)ν−1
(
Dν
a+f
)

(t) dt =
(
JaνD

ν
a+f
)

(x) , all a 6 x 6 b.

(30)

We give another reverse left fractional Opial type inequality.
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Corollary 1. (to Corollary 1) Let 0 < r < p with r < 1, 0 < a < b <∞,
ν > 0, n = [ν]; f ∈ Cν

a ([a,b]), such that f (i) (a) = 0, i = 0, 1, . . . , n − 1
for only the case of ν > 1. Assume here that Dν

a+f is non-negative over
(a, b) such that Dν

a+f > 0 almost everywhere on [a, b]. Suppose that
‖x−νf (x) ‖r,[a,b] < ∞ and ‖Dν

a+f‖r,[a,bt] < ∞, for almost all t ∈
[
a
b
,1
]
.

Then
b∫

a

(f (x))p
(
Dν
a+f (x)

)r−p
x−νpdx >

>
1

Γ (ν)p

( 1∫
a
b

(1− t)ν−1

t
1
r

∥∥Dν
a+f
∥∥
r,[a,bt]

dt

)p ∥∥Dν
a+f
∥∥r−p
r

. (31)

Proof. By Corollary 1, Theorem 6, see also (28). �

We need the following representation result.

Theorem 7. [1, p. 395] Let ν > γ + 1, γ > 0. Call n = dνe, m := dγe.
Assume f ∈ ACn([a, b]), such that f (k) (a) = 0, k = 0, 1, . . . ,n−1, and
Dν
∗af ∈ L∞ (a, b). Then Dγ

∗af ∈ C ([a, b]), Dγ
∗af (x) = Im−γf (m) (x), and

Dγ
∗af (x) =

1

Γ (ν − γ)

x∫
a

(x− t)ν−γ−1Dν
∗af (t) dt =

(
Iν−γDν

∗af
)

(x) , (32)

∀ x ∈ [a, b] .

Remark 1. (to Theorem 7) By Corollary 3 we also have

f (x) =
1

Γ (ν)

x∫
a

(x− t)ν−1Dν
∗af (t) dt = (IνDν

∗af) (x) , (33)

∀ x ∈ [a, b] .

It follows left fractional direct Opial type integral inequalities.

Theorem 8. If p > 0, q > 0, p+ q = r > 1, 0 6 a < b <∞, γ < r, ω (x)
is decreasing and positive in (a, b). Let ν > γ + 1, γ > 0, call n = dνe,
f ∈ ACn ([a, b]) : f (k) (a) = 0, k = 0, 1, . . . , n − 1; Dν

∗af ∈ L∞ (a, b), with
Dν
∗af > 0 over (a, b). Then

b∫
a

(f (x))p
(
Dγ
∗af (x)

)q
xγ−νp−(ν−γ)q−1ω (x) dx 6
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6 C

b∫
a

((Dν
∗af) (x))r xγ−1ω (x) dx, (34)

where

C =

(
Γ
(
1− γ

r

)
Γ
(
ν + 1− γ

r

))p( Γ
(
1− γ

r

)
Γ
(
ν − γ + 1− γ

r

))q. (35)

Proof. Directly from Theorem 3. Notice that

b∫
a

[(IνDν
∗af) (x)]p

[(
Iν−γDν

∗af
)

(x)
]q
xγ−νp−(ν−γ)q−1ω (x) dx

((32), (33))
=

=

b∫
a

(f (x))p
(
Dγ
∗af (x)

)q
xγ−νp−(ν−γ)q−1ω (x) dx. (36)

So, in applying (7), now instead of f we take Dν
∗af . �

Theorem 9. If p > 0, q > 0, p + q = r > 1, 0 6 a < b < ∞, γ < r,
ω (x) is decreasing and positive in (a, b). Let ν > γi + 1, γi > 0, i =
1, 2, call n = dνe, f ∈ ACn ([a, b]) : f (k) (a) = 0, k = 0, 1, . . . , n − 1;
Dν
∗af ∈ L∞ (a, b), with Dν

∗af > 0 over (a, b). Then

b∫
a

(
Dγ1
∗af (x)

)p (
Dγ2
∗af (x)

)q
xγ−(ν−γ1)p−(ν−γ2)q−1ω (x) dx 6

6 C∗
b∫

a

((Dν
∗af) (x))r xγ−1ω (x) dx, (37)

where

C∗ =

(
Γ
(
1− γ

r

)
Γ
(
ν − γ1 + 1− γ

r

))p( Γ
(
1− γ

r

)
Γ
(
ν − γ2 + 1− γ

r

))q. (38)

Proof. Use of Theorem 7 and similar to Theorem 8. �

Corollary 1. All as in Theorem 8. Then

b∫
a

(
Dγ
∗af (x)

)p
((Dν

∗af) (x))q xγ−(ν−γ)p−1ω (x) dx 6
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6 C

b∫
a

((Dν
∗af) (x))r xγ−1ω (x) dx, (39)

where

C =

(
Γ
(
1− γ

r

)
Γ
(
ν − γ + 1− γ

r

))p.
Proof. By Theorems 3, 7. �

We need

Remark 2. [1, p. 26] Let ν > γ + 1, γ > 0, n = [ν], x0 ∈ [a, b] fixed,
f ∈ Cν

x0
([a, b]) : f (i) (x0) = 0, i = 0, 1, . . . , n− 1. Then

(
Dγ
x0+f

)
(x) =

1

Γ (ν − γ)

x∫
x0

(x− t)(ν−γ)−1
(
Dν
x0+

f
)

(t) dt, (40)

which is continuous in x on [x0, b].

We continue with

Theorem 10. If p > 0, q > 0, p + q = r > 1, 0 6 a < b < ∞, γ < r,
ω (x) is decreasing and positive in (a,b). Let ν > γ + 1, γ > 0, n = [ν],
f ∈ Cν

a ([a, b]) : f (i) (a) = 0, i = 0, 1, . . . , n− 1. Assume that Dν
a+f > 0 on

(a, b). Then

b∫
a

(
Dγ
a+f (x)

)p (
Dν
a+f (x)

)q
xγ−(ν−γ)p−1ω (x) dx 6

6 C1

b∫
a

(
Dν
a+f (x)

)r
xγ−1ω (x) dx, (41)

where

C1 =

(
Γ
(
1− γ

r

)
Γ
(
ν − γ + 1− γ

r

))p.
Proof. By Theorem 3 and see Remark 2. �

We make

Remark 3. By [4], see Theorem 2, let s = r > 1, 0 6 a < b 6 ∞,
γ is real, ω (x) is decreasing and positive in (a, b), f (x) and Hk (x, y)
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(k = 1, . . . , n) are measurable and non-negative on (a, b), Hk (x, y) is ho-
mogeneous of degree −1,

(Hkf) (x) =

b∫
a

Hk (x, y) f (y) dy, k = 1, . . . , n, (42)

and

‖f‖r =

( b∫
a

f (x)r xγ−1ω (x) dx

) 1
r

, (43)

then
‖Hkf‖r 6 Ck ‖f‖r , (44)

where

Ck =

1∫
a
b

Hk (1, t) t−
γ
r dt, k = 1, . . . ,n. (45)

Here a
b
means 0 if a = 0 or b =∞ or both; and bt means ∞ if b =∞.

Let now pk > 0 such that
n∑
k=1

pk = r.

We notice the following (apply generalized Hölder’s inequality)

b∫
a

n∏
k=1

(Hkf (x))pk xγ−1ω (x) dx 6
n∏
k=1

( b∫
a

(Hkf (x))r xγ−1ω (x) dx

) pk
r

=

=
n∏
k=1

‖Hkf‖pkr
(44)
6

n∏
k=1

Cpk
k ‖f‖

pk
r =

( n∏
k=1

Cpk
k

)
‖f‖

n∑
k=1

pk

r = (46)

=

( n∏
k=1

Cpk
k

)
‖f‖rr = Ĉ

( b∫
a

f (x)r xγ−1ω (x) dx

)
,

where

Ĉ :=
n∏
k=1

Cpk
k . (47)

We have proved
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Theorem 11. Let 0 6 a < b 6 ∞, γ is real, ω (x) is decreasing and
positive in (a, b), f (x) and Hk (x, y) (k = 1, . . . , n) are measurable and
non-negative on (a, b), Hk (x, y) is homogeneous of degree −1,

(Hkf) (x) =

x∫
a

Hk (x, y) f (y) dy, k = 1, . . . , n. (48)

Let pk > 0 :
n∑
k=1

pk = r > 1. Then

b∫
a

n∏
k=1

(Hkf (x))pk xγ−1ω (x) dx 6 Ĉ

( b∫
a

f (x)r xγ−1ω (x) dx

)
, (49)

where

Ĉ =
n∏
k=1

( 1∫
a
b

Hk (1, t) t−
γ
r dt

)pk
. (50)

Next we give an application.

Theorem 12. Here pk > 0 :
n∑
k=1

pk = r > 1. Let 0 6 a < b 6 ∞, γ < r,

ω (x) is decreasing and positive in (a, b), f (x) is measurable and non-
negative on (a,b), Iαk is the left Riemann-Liouville operator of fractional
integration defined by

(Iαkf) (x) =

x∫
a

(x− t)αk−1

Γ (αk)
f (t) dt, for αk > 0, (51)

and
Iαkf (x) = f (x) , for αk = 0; k = 1, . . . , n.

Then
b∫

a

n∏
k=1

((Iαkf) (x))pk x
γ−

n∑
k=1

αkpk−1
ω (x) dx 6 C̃

( b∫
a

f (x)r xγ−1ω (x) dx

)
,

(52)
where

C̃ =
n∏
k=1

(
Γ
(
1− γ

r

)
Γ
(
αk + 1− γ

r

))pk . (53)
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Proof. Here we apply Theorem 11. Inequality (52) derives from (49)
directly. We let

Hk (x,y) =
(x− y)αk−1

xαkΓ (αk)
for x > y > a and αk > 0.

Then Hkf (x) = x−αkIαkf (x), k ∈ {1, . . . , n} . Notice that

1∫
a
b

Hk (1,t) t−
γ
r dt =

1∫
a
b

(1− t)αk−1

Γ (αk)
t−

γ
r dt 6

6

1∫
0

(1− t)αk−1

Γ (αk)
t−

γ
r dt =

Γ
(
1− γ

r

)
Γ
(
αk + 1− γ

r

) , (54)

for k ∈ {1, . . . , n} .
Therefore

C̃ =
n∏
k=1

(
Γ
(
1− γ

r

)
Γ
(
αk + 1− γ

r

))pk .
�

Next we give general left fractional direct Opial type integral inequal-
ities.

Theorem 13. Here pj > 0 :
N∑
j=1

pj = r > 1. Let 0 6 a < b < ∞,

γ < r, ω (x) is decreasing and positive in (a,b) . Let ν > γj + 1, γj > 0,
j = 2, . . . , N, n = dνe, f ∈ ACn ([a, b]) : f (k) (a) = 0, k = 0, 1, . . . , n − 1,
and Dν

∗af ∈ L∞ (a, b), with Dν
∗af > 0 over (a, b). Then

b∫
a

(f (x))p1
N∏
j=2

(
D
γj
∗af (x)

)pj
x
γ−νp1−

N∑
j=2

(ν−γj)pj−1
ω (x) dx 6

6

[(
Γ
(
1− γ

r

)
Γ
(
ν + 1− γ

r

))p1 N∏
j=2

(
Γ
(
1− γ

r

)
Γ
(
ν − γj + 1− γ

r

))pj]×
×
( b∫

a

(Dν
∗af (x))r xγ−1ω (x) dx

)
. (55)
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Proof. By Theorem 12, use of Theorem 7 and (33). �

Theorem 14. All as in Theorem 13. Then
b∫

a

(Dν
∗af (x))p1

N∏
j=2

(
D
γj
∗af (x)

)pj
x
γ−

N∑
j=2

(ν−γj)pj−1
ω (x) dx 6

6

( N∏
j=2

(
Γ
(
1− γ

r

)
Γ
(
ν − γj + 1− γ

r

))pj)( b∫
a

(Dν
∗af (x))r xγ−1ω (x) dx

)
. (56)

Proof. By Theorem 12, use of Theorem 7. �

Corollary 1. All as in Theorem 13, and γ2 = γ3 = . . . = γλ,
γλ+1 = γλ+2 = . . . = γµ, and γµ+1 = γµ+2 = . . . = γN . Then

b∫
a

(Dν
∗af (x))p1

(
Dγλ
∗af (x)

) λ∑
j=2

pj (
Dγµ
∗af (x)

) µ∑
j=λ+1

pj (
DγN
∗a f (x)

) N∑
j=µ+1

pj
×

×x
γ−(ν−γλ)

(
λ∑
j=2

pj

)
−(ν−γµ)

(
µ∑

j=λ+1
pj

)
−(ν−γN )

(
N∑

j=µ+1
pj

)
−1
ω (x) dx 6

6

(
Γ
(
1− γ

r

)
Γ
(
ν − γλ + 1− γ

r

)) λ∑
j=2

pj( Γ
(
1− γ

r

)
Γ
(
ν − γµ + 1− γ

r

)) µ∑
j=λ+1

pj

×

×
(

Γ
(
1− γ

r

)
Γ
(
ν − γN + 1− γ

r

)) N∑
j=µ+1

pj( b∫
a

(Dν
∗af (x))r xγ−1ω (x) dx

)
. (57)

Proof. By Theorem 14. �

We finish with

Theorem 15. Here pj > 0 :
N∑
j=1

pj = r > 1. Let 0 6 a < b < ∞,

γ < r, ω (x) is decreasing and positive in (a, b) . Let ν > γj + 1, γj > 0,
j = 2, . . . , N, n = [ν], f ∈ Cν

a ([a,b]) : f (k) (a) = 0, k = 0, 1, . . . , n − 1.
Assume that Dν

a+f > 0 on (a, b). Then

b∫
a

(
Dν
a+f (x)

)p1 N∏
j=2

(
D
γj
a+f (x)

)pj
x
γ−

N∑
j=2

(ν−γj)pj−1
ω (x) dx 6
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6

( N∏
j=2

(
Γ
(
1− γ

r

)
Γ
(
ν − γj + 1− γ

r

))pj)( b∫
a

(
Dν
a+f (x)

)r
xγ−1ω (x) dx

)
. (58)

Proof. By Theorem 12, use of (40). �

Comment. With the exhibited methods above one can derive all kinds
of variation of left fractional Opial type integral inequalities, as well as of
ordinary differentiation ones, due to lack of space we omit this task.
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