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MODIFIED MODULUS OF SMOOTHNESS
AND APPROXIMATION IN WEIGHTED LORENTZ
SPACES BY BOREL AND EULER MEANS

Abstract. Using one-sided Steklov means, we introduce a new
modulus of smoothness in weighted Lorentz spaces. The direct and
inverse approximation theorem for this modulus of smoothness are
proved. Also, we estimate the rate of approximation by the Borel
and Euler means in weighted Lorentz spaces.
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1. Introduction. Let f be a 2m-periodic continuous function
(f € Co), T,, be the space of trigonometric polynomilas of degree at
most n, n € Zy = {0,1,...}, || flle = maxuejo2+ |f(x)]. Let us consider
the best approximation E,(f)s = inf{||f — ty||c : tn € Tp}, n € Z, and
the modulus of continuity w(f,d) = supgcp<s ||f(- +h7) = f(-)]|oo. Then the
classical Jackson theorem states that

En(f)oo < Cw(f,(n+1)71), neZy,

while the inverse Salem-Stechkin inequality gives

n—1
w(f.1/n) KCn™' Y " Ei(f)es meN={1,2,..}
k=0

(see [6, Ch. 7]). For a 2m-periodic locally integrable function f, we can
consider two variants of Steklov means:

z+h z+h
@) =" [ fdu, 27 = w7 [ fwdu
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Israfilov, Kokilashvili, and Samko [9] introduced a modulus of smoothness
in a weighted Lebesgue space with variable exponent LY of order r € N

T

[T = s2)(7)

i=1

Q(f,0)1p, = sup

0<h; <o

LY,

where [ is the identical operator, and obtained a Jackson-type estimate
E.(f)r, < O(f,1/n)p, n € N, and the inverse result. For another
modulus of smoothness, direct and inverse approximation theorems were
obtained by Ky [13]. Many mathematicians, such as Akgiin, Guven, Is-
rafilov, Kokilashvili, Yildirir, studied the approximation by trigonometric
polynomials in various weighted spaces. We note only the papers [17], [10]
studying the moduli of smoothness defined with help of s;,(f) and the pa-
pers connected with Lorentz spaces: [12], [20], [21], [1], [2]-

2. Definitions. A Lebesgue measurable 27-periodic function
w : [0,27] — [0,00) is called a weight function if w™'({0}) has measure
zero. If w(E) = [w(z)dx for a measurable subset E of [0, 27], then

E

fo(t) =inf{A > 0: w({z € [0,27] : | f(z)] > A\}) < t}.

Let 1 < p,q < 0o, w be a weight. A measurable function f on [0, 27]
belongs to the weighted Lorentz space LP:4, if

2

1/q ‘
s = ([ ta) " <oo o= [ i@
0 0

The classical Lorentz spaces were introduced by Lorentz (see [15]). If
p = q, then LP? coincides with the weighted Lebesgue space LP .
A weight w belongs to the Muckenhoupt class A,(T), 1 < p < oo, if

ks, =su (1117 [ wyae) (1117 [0 d) <o,

where p’ = p/(p—1) and the supremum is taken with respect to all intervals
I C R whose length || does not exceed 27 (see [16]).

If we A,(T), 1 < p,g < oo, then the Hardy-Littlewood maximal
operator is bounded in L7 (see |5]). As a consequence, the operators sy,
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and 322) are uniformly bounded in LP4. Now, we define, for » € N, the

following modulus of smoothness:

r

[I¢ =)

=1

Qr(fa 6)p,q,w = sup

0<hi<6,i=1,...,r

(1)

p,q,w

It is clear that Q,.(f,0), 4w is finite for w € A,(T) and f € LP9. In [12]
and [1], the authors consider another modulus of smoothness (£, ), 4.0,

where operators s, in (1) are substituted by sg). By definition,
E.(f)pqgw = infe en, | f — tollpguw, 7 € Zy. Forr € N, 1 < p,q < oo, and
w € Ap(T) we denote by W], the collection of all absolutely continuous
on each period functions f (f € AC,,), such that f/,..., f~Y € ACy,
and f") € Lpa,

For a function f € L2% and r € N, we define the Peetre’s K-functiomal
by

K(ft, W) = 0t IS = gllpga + 197 g}

T
9EWY 4w

If 1 <p,q<oo,we Ay(T), then LP4 C L) := L5 wo(x) =1, (see the

’LU07

proof of Proposition 3.3 in [12]) and f € LP has the Fourier series

f)/2+2(ak(f) cos kx + bg(f) sin kx) ZAk
k=1

Let us consider partial sums S, (f)(z) = >,_, Ax(f)(x), the Borel means

r)=e" ZrkSk(t)/k!, r >0,
k=0

and the Euler means

n

el (f)x)=(1+t)™" (Z) t" kS (f)(x), t>0, neN.

k=0

More about these means can be found in the monograph by Hardy [7]. Tt
is well known that for f € Li_, the following limit

27

™

fla)=@2m)~" lim [ (f(@ —u) = f(z+w)) ctg(u/2) du
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exists a.e. on R (see [3, Ch. VIIL §7]). The function f(z) is called the

conjugate function to f. If f € Li_, then its Fourier series has the form
o0

> (ar(f) sinkz — by (f) cos kx).
k=1
3. Auxiliary propositions.

Lemma 1. Let 1 < p,q < oo, w € A,(T). Then the conjugation
operator is bounded in L?? and the inequalities

150 (Nllpgw < Cill fllpges 1 = Sa(H)llpgew < (Cr+ 1D E(fpguw, (2)

hold for n € Z and f € Lb9.

The statement concerning conjugation operator can be found in
[11, Ch. 6, Theorem 6.6.2], while the inequalities (2) can be proved as
in [3, Ch. VIII, §20].

Lemma 2 is stated in [20] for arbitrary r > 0 with a reference to the
method of Ky [14]. We give another proof for r € N.

Lemma 2. Let1 <p,q<oo, we A,(T), t, €T, neN,reN. Then

E b g < O [Itallpg (3)

holds.

Proof. It is sufficient to prove (3) in the case r = 1. Note that for
tn(z) =D r_o(ck cos kx + dj sin kx) we have

b (@) = = D k(Sk(tn)(2) = Sk (ta) (@) = i Sk(tn) (@) = nta ().

Since the operators Sy are uniformly bounded in LE9 and ||t,|/pq40 <
g Clthprq,w, we Obtaln

1t llpaw < Ca(n = Dltallpgw + nlltallpgw < CL(Ce + 1)nlitallpgw.

Lemma 3 is proved in [1] also for r > 0.

Lemma 3. Let1<p,q<oo,wée€ AyT),reN, feW . Then

En(f)]?#bw < C(n+ 1)_rEn(f(T))p,q,w <C(n+ 1)_r||f(r)||p,q,w’ n e L.
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Lemma 4 is proved in [12, Proposition 3.2|.

Lemma 4. Let 1 < p,q < oo, w € A,(T) and p(x,y) is a measurable
2m-periodic in each variable function. Then

H 7¢<x,->dx

Lemma 5. Let 1 <p,q<oo,wée€ AyT), r,keN, feW] . Then

2
< [ et M
p7q7w 0

k() pgaw < CFQ(F® ) g 0 € [0,27],

Qe (f, 5)p7q,w < CHf(k)Hp,q,wdkv 6 € [0, 27].

Proof. It is sufficient to prove the first inequality of the Lemma for £ = 1.
r+1

Let 0<hi <6, 1<i<r+1, feW,, , and g(x) = [[(I - sp,)(f) ().
=2
Then we have
r+1 hat
[[0 = su)h@ ==k [ [gardsar (1
=1 00

By Lemma 4 and the uniform boundedness of s, in LP4, we obtain

r+1 hy t
H(I — sp,)(f) < O1hyt /thl /g’(- + s)ds dt <
i=1 p.aw , , Pgw

h1

< C2h1_ng/Hp,q,w /tdt < 2_1C2h1|‘9/Hp,q,w < 2_102(5H9/Hp,q,w' (5)
0

r+1

It is clear that ¢' = [[({ — sp,)(f’) a.e. on R. Taking the supremum
i=2

in the left-hand side of (5) with respect to h; € [0,0], 1 < i < r+ 1,

we find that Q. 1(f,0)pqw < C308.(f,60)pqw- If we use the equality
hot

(sh = I)(f)(@) =h~t [ [ f'(x+ s)dsdt instead of (4) similarly to (5), we
00

obtain the second inequality of Lemma 5 in the case £ = 1. The general
case easily follows from this one. [J
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Lemma 6 is proved in [19].

Lemma 6. Letl €N, q > 0. Then there exists C' = C(l, q) independent
of n, such that

~(n\ """ _ (¢+1)"
Z(k)(lwrl)lgc(n—kl)l’ n el

k=0

Lemma 7 was established by Iofina [8].

Lemma 7. Let~,(t) =e* > t"/k!,t > 1. Thenyy(t) > C > 0, where
k=0
[t] is the integer part of t.

4. Direct and inverse approximation theorems. As usually,
A(t) < B(t), t € T, means that there exist Cy,Cy > 0, such that
CiA(t) < B(t) < CLA(t), t e T.

Theorem 1. Let 1 <p,q<oo, we Ay(T),reN, feW, . Then

Q. (f, ) pgw < K(f,t", L2 WY ), te€]|0,2n].

p?q’w

Proof. By the uniform boundedness of the Steklov operators s; in L4
and Lemma 5 for g € W) 2n> We have

Q(f, t)p,q,w < Qr(f -9 t)]D,q,w +Q(g, t)p#],w <
<Cillf - g”p,q,w + C2trH9(r)Hp,q,w' (6)

Taking the infimum in the right-hand side of (6) over g € W, we obtain

7q7w )

O (F)p g < max(Cy,Co) K (f, 17, LPI, W .

p7q7w

For the converse inequality, we use the operator

z

9 z t
O.(f)(x) == f(z + s)dsdt.
1
In [18], it is proved that

OV (@) = s — 1*(f)(2)- (7)
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Similar to the proof of Lemma 5, by Lemma 4 we have

10 (Hllpar < /t||t—1/fx+sds||pqw <

2
<Cillflpaws [ tdt = Cul e )

0

For the operators Al =T —(I—©7)" and U; = 03777 by (7) we find
that
r—1

AP g < ZO(;")H (O ()0 g0 =
=§()n or(U >>><r>||p,q,w=§()—||< S e

Since s;, and ©, commute, by (8) we obtain

AT <2 S (j) N = 5 (Dl <

=0
< Coz (I = 52)" (Nllpgw < C227 "0 (f12)pgw- (9)

Using (8) and Lemma 4, we have for g € Lg;):

17 = ©2)(9)llp.gw < Cs sup (7= 5:)(G)llpgu- (10)

<tz

(see similar arguments in |18, (4.6)]). Using the equality I-Al = (I-e7)"
and applying (10) 7 times, we obtain

[ A,[zﬂ(f>‘|p,q,w < O30 (f,2)pgo- (11)
From (9) and (11) we deduce
1f = AP (P llpgaw + 2 IATEN D Npg0 < Ca(F,2) g0

where A[Zr](f) € Wiyar Thus, K(f, 2", Ly Wy ,) < Ci&d(f, 2)p(, and
the proof of Theorem 1 is complete. [
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Now we compare our modulus of smoothness with 2%(f,0), .. used
in [12] and [1].

Corollary 1. Let1l <p,q < oo, w € A,(T), r € N. Then

Qo (f, 5)p7q,w = Qi(ﬁ 5)p7q,w7 o€ [Oa 2”]' (12)

Proof. In [1] it is proved that, under conditions of the Corollary,

Q:(f’ 5)1’7%“1 = K(f, 57”’ lejz;qv WQT )a d S [Oa 27T]

p7q7w
Combining this result with Theorem 1, we obtain (12). O
Theorem 2. Let 1 <p,q< oo, we A,(T), r € N. Then

E"(f>p,q,w g OQT(f? (n + 1)71>p’q7w, n e Z+.

Proof. For n € Z, we choose a function g € W _,, such that

Hf - 9||)p,q,w + (n + 1)7TH9(T)||p,q7w < 2K(f7 (n + 1>7T7 Ly w? )

p?q7w

By Lemma 3 and Theorem 1, we have, for n € Z,:

<Gy (”f - g”p7q,w + Hg(r)”p,q,w(n + 1)_r) <
g 201K(f7 (n + 1)_T7 Lﬁ;’qa WT ) g C2Q7“(f7 (TL + 1)_1>p,q,w-

p,q,w

Theorem 3. Let 1 <p,q<oo, we A,(T), r € N. Then

n

Q(fon pgw O K By (f)pgas €N (13)
k=1

Proof. Let t, € T, be the polynomial of the best approximation for
fe Ll keZ,. Using Lemma 5 and Lemma 2, we obtain

Q.(f, Tfl)p,q,w <Q(f - z527’l77fl);17,f17111 + Qr(t2m>nil)p,q,w <

p?q’w)} g

< CLIf = tam o + 07 It pg) <

m—1
< Co| By (flpgu + 17" (ntﬁ” 1§ g + > IS — £
1=0
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m—1
< [E2m<f>p,q7w e (ntl il + 3 2 s tginp,q,w)] <

=0

m—1
< [Ew(f)p,q,w o (Eo(f)p,q,w s 2"E21:(f>p,q,w)] <
=0

2m
<Cs Y K 'Eei(f)pgws neEN
k=1
If n € Nis fixed and 2™ < n < 2™ m € Z,, then (13) easily follows
from the last inequality. [

If w is increasing and continuous on [0;27], w(0) = 0, then w € &.
A function w € @ belongs to the Bary-Stechkin class B,, a > 0, if
Yoo kT w(k) = O(n®w(nt)), n € N (see [4]).
Corollary 1. Let 1 < p,q < oo, w € Ay(T), r € N and w € B,. Then,

the conditions E,(f)pqw = Ow((n + D)™), n € Z,, and
Q. (f,0)pqw = OWw(9)), 6 € [0,27], are equivalent.

Remark 1. The converse inequality from Theorem 3 has the same form
as the classical converse approximation theorem (see [6, Ch. 7, Theo-
rem 3.1]), while (see Corollary 1)

Q:(fv n_l)p,q,w < Cn_QT Z k2r_1Ek—1(f>p,q,wa n € N.
k=1

5. Approximation by the Borel and Euler means.

Theorem 4. Let 1 < p,q <oo, w e Ay(T), 7€ N, t>0and f € LV
Then

If — €Z(f)||p,q,w < CQ.(f, n_l)p,q,wv n €N, (14)

n

1f = €n(Nllpgw < Cn7" Z KB (fpguw, neEN (15)
k=1
Proof. By the definition of the Euler means, Lemma 1, and Theorem 2,
we obtain

1f = en(Nllpgw = (L +1)7"

3 (e -sim| <

=0 \J

p?q7w
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Cl u n n—j
S (1 + t)n Z <j)t EJ(f)W],w <

~ . jQT ? b,q,w*
S

Due to Theorem 1, we have the property

Qo (f, A0)pgw S CA+1)"Q(f, 0)pgw, A>0.

By this property and Lemma 6, we find that

02 - N n—j n+1 ' 1
I = e lbaw < gy 2 (j)t ( P 1) ld g S
j=0

C1”; 1 n n t”_j 1
< 1 TQT ) w . - < C Qr , ——— w
(1 4 t)n (n+ ) (f n+ 1)p,q, ; (]) (] + 1)7. 4 (f n+ 1)p7q7

and (14) is proved. The inequality (15) follows from (14) and Theo-
rem 3. [J

Theorem 5. Let 1l <p,q<oo,we A,(T),reN,t>1andf e Ll
Then

1k
Hf_Bt Hpqw\ Zk_ 7tEk‘ pq,wv
k=0

where [t] is the integer part of t.

Proof. Let 7,, € T, be such that ||f — 7,||p.00 = En(f)pgw- Then, by
Lemma 1,

1f = Bi(Dllpgaw < Be(7n) = Bl llpgaw + 1Be(7n) = Tallpgwt

e
7 = fllpgw < e tz gHSk(f = To)llpgw + 1Be(70) — Tallp.gwt
k=0

+||Tn - f||p,q,w < ClEn(f)p,th + HBt(Tn) - Tn”p,q,w'

Now,

1k:—t

Z

k=

N

| Be(70) — 7—an,q,w = (Sk(m) — Tn)

p?q7w
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n-l1 tk —t
& Z I Ey(Tn)p.gw
k=0

By the definition of 7,

Ek(Tn)p,q,w Ek(f )pq w T Ek(f)p,qﬂu < 2Ek(f)p,q,w~

Using the previous inequaities and Lemma 7 and taking n = [¢], we obtain

E-1 5 4
t"e
[ Bt(f)”p,q,w < OIE[t](f)p,q,w +2C% Z TEk(f)n%w <
k=0 )
[t] tk —t
\032 k' Ek(f)pqw
k=0

Let us show that the estimate of Theorem 5 gives a clear result on
some subclasses of L2,

Corollary 1. Let1l <p,g<oo,w e A,(T),reN,t>1and f € LP1.
IfE.(fpgw=0(n+1)"%),n € Zi, or Qf,0)pqw = 0(0%), 6 € [0, 27],
then

If = Be(Hllpgew <CT%, £ 21

Proof. Under conditions of Corollary 1, we have, by Theorem 5 and
Theorem 2:

tk —t [t]

a tke_t t+1 a
1f = Bi(f)llpgw < Clzm—Cl (t+1 Z x PR}

k=0

For m = [a] + 1 and 0 < k < [t], we have

k
t+1 < t+1 < 2mgm
k+1 k+1 (k+1)m
and

[t] tk‘-i—m

If = Bt(f)Hp,q,w <Gyt +1)7" e’ T o 1\ym S
Zo kl(k+1)
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=ttt B+ 1) (B +m)
t+1aef (k +m)! (k+1)m h

k:O
| o k+m
< Cgm. Z t < Cg ‘
(t 4 1)xet — (k+m)! = (t+ 1)
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