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SEMI-LOCAL CONVERGENCE OF A DERIVATIVE-FREE
METHOD FOR SOLVING EQUATIONS

Abstract. We present the semi-local convergence analysis of a
two-step derivative-free method for solving Banach space valued
equations. The convergence criteria are based only on the first
derivative and our idea of recurrent functions.
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1. Introduction. Let B1, B2 stand for Banach spaces, U(x,ρ) denote
a closed ball with center x ∈ B1 and of radius ρ > 0.We denote the closure
of U(x, ρ) by Ū(x, ρ).

We are dealing with the problem of approximating a solution x∗ of
equation

F (x) = 0. (1)

Solving equation (1) is very important, because many problems are re-
duced to it by Mathematical modeling [1–8]. The solution methods are
usually of iterative nature, since solutions in the closed form are rarely
obtained. In this article, we develop a derivative-free method to generate
a sequence approximating x∗ under certain conditions. The method is
defined for all n > 0 as

yn = xn −B−1
n F (xn)

xn+1 = xn − A−1
n F (xn), (2)

where An = [xn+yn
2

, xn;F ] (n > 0), Bn = [xn−1+yn−1

2
, xn;F ] (n > 1), and

x0, y0 ∈ Ω are initial points. Here, [x, y;F ] : Ω × Ω −→ L(X, Y ) de-
notes a divided difference of order one for the operator F at the point
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x, y ∈ D (see [2], [6], [8]). The method (2) is a useful alternative to third-
order methods, such as the method of tangent hyperbolas (Halley) or the
method of tangent parabolas (Euler-Chebysheff) [1–8]. However, these
methods are very expensive, since they require the evaluation of the sec-
ond Fréchet derivative at each step. Discretized versions of these methods,
such as Ulm’s method, use divided differences of order one [1–8].

The rest of the paper is organized as follows. In Section 2, we present
the semi-local convergence analysis of method (2), whereas in the conclud-
ing Section 3, we present the numerical examples.

2. Semi-local convergence. Semi-local convergence is based on the
majorant sequence defined for n = 1, 2, . . . and some η > 0 and s > 0, as
follows:

t0 = 0, t1 = η > 0, s0 = s > 0,

sn = tn +
L(2(tn − tn−1) + (sn−1 − tn−1))(tn − tn−1)

2[1− L0

2
(tn−1 + sn−1 + 2tn + s)]

(3)

tn+1 = tn +
L(2(tn − tn−1) + (sn−1 − tn−1))(tn − tn−1)

2[1− L0

2
(3tn + sn + s)]

.

Define the scalar cubic polynomial p as

p(t) = L0t
3 + 3L0t

2 + 3Lt− 3L for some L0 > 0 and L > 0. (4)

By this definition, p(0) = −3L and p(1) = 4L0. It follows from the inter-
mediate value theorem and the Descartes rule of signs, that polynomial p
has a unique root γ ∈ (0, 1). Moreover, define α0 and α1 as

α0 =
L(2(t1 − t0) + s0 − t0)

2[1− L0

2
(3t1 + s1 + s)]

, (5)

α1 =
L(2(t1 − t0) + s0 − t0)

2[1− L0

2
(t0 + s0 + 2t1 + s)]

, (6)

and set
γ0 = max{α0, α1}. (7)

Next, we present a convergence result for the majorizing sequence {tn}.
Lemma 1. Suppose that there exists γ, such that L0s < 2 and

0 < γ0 6 γ 6 1− L0η

1− L0

2
s
. (8)
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Then, the sequence {tn} given by (3) is nondecreasing, bounded from
above by t∗∗ = η

1−γ , and converges to its unique least upper bounds t∗,
which satisfies η 6 t∗ 6 t∗∗.

Proof. We shall show, using induction, that

0 <
L(2(tk+1 − tk) + (sk − tk)
2[1− L0

2
(3tk+1 + sk+1 + s)]

6 γ (9)

and
0 <

L(2(tk+1 − tk) + (sk − tk)
2[1− L0

2
(tk + sk + 2tk+1 + s)]

6 γ. (10)

Estimates (9) and (10) hold for k = 0 by (3), (5)–(8). Suppose that (9)
and (10) hold for j = 1, 2, . . . , k − 1. Then, by (3), (9) and (10),

0 < tk+1 − tk 6 γ(tk − tk−1) 6 γkη =⇒ tk+1 6
1− γk+1

1− γ
η, (11)

0 < sk − tk 6 γ(tk − tk−1) 6 γkη =⇒ sk 6
1− γk

1− γ
η + γkη =

1− γk+1

1− γ
η.

(12)
By (9) and (10), we must only complete the induction for (9). Evidently,
this is true by (3), (11), and (12), provided that

L

2
(2γkη + γkη) +

γL0

2
(3

1− γk+1

1− γ
η +

1− γk+2

1− γ
η + s)− γ 6 0. (13)

Estimate (13) suggests to introduce functions ϕk on [0,1) as

ϕk(t) =
3L

2
tk−1η +

L0

2
[3(1 + t+ . . .+ tk) + (1 + t+ . . .+ tk+1)]η. (14)

We seek for a relationship between two consecutive functions ϕk. We can
write, in turn,

ϕk+1(t) =

=
3L

2
tkη +

L0

2

(
3(1 + t+ . . .+ tk+1) + (1 + t+ . . .+ tk+2)

)
η +

L0

2
s− 1−

− 3

2
Ltk−1η−L0

2

(
3(1+t+. . .+tk)+(1+t+. . .+tk+1)

)
η−L0

2
s+1+ϕk(t) =

= ϕk(t) + p(t)
tk−1η

2
, (15)
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where p(t) is given by (4). In particular, we get

ϕk+1(γ) = ϕk(γ) (16)

by the definition of γ. Therefore, (13) holds, provided that

ϕ∞(γ) 6 0, (17)

where
ϕ∞(γ) = lim

k−→∞
ϕk(γ). (18)

However,

ϕ∞(γ) =
2L0η

1− γ
+
L0

2
s− 1 (19)

by (13). Hence, (17) holds if

2L0η

1− γ
+
L0

2
s− 1 6 0 (20)

or
γ 6 1− L0η

1− L0

2
s
, (21)

which is true, by (8). Then sequence {tn} is nondecreasing and, in view
of (11), is bounded from above by t∗∗. Hence, it converges to its unique
least upper bound that satisfies η 6 t∗ 6 t∗∗. �

Next, we present the semi-local convergence for the method (2).

Theorem 1. Assume the following:

(i) F : Ω ⊂ B1 −→ B2 is a continuous operator with a standard divided
difference of order one, such that [· , ·] : Ω × Ω −→ L(B1, B2) and
x0, y0 ∈ Ω are such that A0 = [x0+y0

2
, x0;F ] is invertible. Let

‖x1 − x0‖ 6 η and ‖y0 − x0‖ 6 s.
(ii) Assumptions of Lemma 1 hold.
(iii) ‖A−1

0 ([x, y;F ]− A0)‖ 6 L0(‖x− x0+y0
2
‖ + ‖y − x0‖) for all x, y ∈ Ω

and some L0 > 0. Set ρ = 1
4
( 2
L0
− s) and Ω0 = Ω ∩ U(x0,ρ).

(iv) ‖A−1
0 ([x, y;F ]− [z, y;F ])‖ 6 L‖x− z‖ for all x, y, z ∈ Ω0 and some

L > 0.
(v) Ū(x0, t∗) ⊆ Ω.
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Then there exists a limit point x∗ ∈ Ū(x0, t∗) of the sequence {xn}, such
that F (x∗) = 0.

Proof. We use mathematical induction to show the estimates

‖xn+1 − xn‖ 6 tn+1 − tn (22)

and
‖yn − xn‖ 6 sn − tn. (23)

These estimates are true due to the initial conditions and (3) for n = 0.
Suppose that the initial conditions and (3) hold for n = 0. Also suppose
that they are true for all k = 0, 1, 2, . . . n− 1. Then we have, by (iii):

‖A−1
0 (Bk − A0)‖ 6 L0(‖xk−1 + yk−1

2
− x0 + y0

2
‖+ ‖xk − x0‖) 6

6
L0

2
(‖xk−1 − x0‖+ ‖yk−1 − y0‖+ 2‖xk − x0‖) 6

6
L0

2
(2‖xk−1 − x0‖+ ‖yk−1 − xk−1‖+ ‖y0 − x0‖+ 2‖xk − x0‖ 6

6
L0

2
(2(tk−1 − t0) + sk−1 − tk−1 + 2(tk − t0) + s) =

=
L0

2
(tk−1 + sk−1 + 2tk + s) < 1, (24)

which, together with Banach’s Lemma on invertible operators, show that
Bk−1 is invertible and

‖B−1
k A0‖ 6

1

1− L0

2
(tk−1 + sk−1 + 2tk + s)

. (25)

Similarly,

‖A−1
0 (Ak − A0)‖ 6 L0(‖xk + yk

2
− x0 + y0

2
‖+ ‖xk − x0‖) 6

6
L0

2
(‖xk + yk − (x0 + y0)‖+ 2‖xk − x0‖) 6

6
L0

2
(‖xk − x0‖+ ‖yk − y0‖+ 2‖xk − x0‖) 6

6
L0

2
(3‖xk − x0‖+ ‖yk − y0‖) 6

6
L0

2
(3‖xk − x0‖+ ‖yk − xk‖+ ‖xk − x0‖+ ‖x0 − y0‖) 6
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6
L0

2
(4‖xk − x0‖+ ‖yk − xk‖+ ‖x0 − y0‖) 6

6
2L0

2
(4tk + sk − tk + s) =

=
L0

2
(3tk + sk + s) < 1,

so
‖A−1

k A0‖ 6
1

1− L0

2
(3tk + sk + s)

. (26)

Using the method (2), we get the identity

F (xk) = F (xk)− F (xk−1)− [
xk−1 + yk−1

2
, xk−1;F ](xk − xk−1) (27)

so, by (iii) and (27),

‖A−1
0 F (xk)‖ 6 L(‖xk −

xk−1 + yk−1

2
‖+ ‖xk − xk−1‖) 6

6
L

2
‖2xk − (xk−1 + yk−1)‖‖xk − xk−1‖ 6

6
L

2
(‖xk − xk−1‖+ ‖xk − yk−1‖)‖xk − xk−1‖ 6

6
L

2
(‖xk − xk−1‖+ ‖xk − xk−1‖+ ‖yk−1 − xk−1‖)‖xk − xk−1‖ 6

6
L

2
(2(tk − tk−1) + (sk−1 − tk−1))(tk − tk−1). (28)

Then, by (3), (25), (26) and (28) we obtain

‖yk − xk‖ = ‖[B−1
k A0][A−1

0 F (xk)]‖ 6 ‖B−1
k A0‖‖A−1

0 F (xk)‖ 6

6
L(2(tk − tk−1) + (sk−1 − tk−1))(tk − tk−1)

2[1− L0

2
(tk−1 + sk−1 + 2tk + s)]

= sk − tk (29)

and

‖xk+1 − xk‖ = ‖[A−1
k A0][A−1

0 F (xk)]‖ 6 ‖A−1
k A0‖‖A−1

0 F (xk)‖ 6

6
L(2(tk − tk−1) + (sk−1 − tk−1))(tk − tk−1)

2[1− L0

2
(3tk + sk + s)]

= tk+1 − tk (30)

completing the induction for (22) and (23). We also have
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‖xk+1 − x0‖ 6 ‖xk+1 − xk‖+ . . .+ ‖x1 − x0‖ 6
6 tk+1 − tk + . . .+ t1 − t0 = tk+1 < t∗

and

‖yk − x0‖ 6 ‖yk − xk‖+ ‖xk − x0‖ 6 sk − tk + tk − t0 = sk < t∗,

so yk, xk+1 ∈ U(x0, t∗). Moreover, the sequence {tk} is fundamental by
Lemma 1. Hence, the sequence {xk} is fundamental too and, as such, it
converges to some x∗ ∈ Ū(x0, t∗). By sending k → ∞ in (28) and using
the continuity of F , we conclude F (x∗) = 0. �

Concerning the uniqueness of the solution x∗, we have:

Proposition 1. Under the assumptions of Theorem 1, assume further
that

L0(3t1∗ + t∗) < 2 (31)

for some t1∗ > t∗. Then, x∗ is the only solution of the equation F (x) = 0
in the set Ω1 = Ω ∩ U(x0, t

1
∗).

Proof. Let x1
∗ ∈ Ω1 with F (x1

∗) = 0. Set T = [x∗, x
1
∗;F ]. Using (iii) and

(31), we get

‖A−1
0 (T − A0)‖ 6 L0(‖x∗ −

x0 + y0

2
‖+ ‖x1

∗ − x0‖) 6

6 L0(
‖x∗ − x0‖+ ‖x1

∗ − x0‖
2

+ ‖x1
∗ − x0‖) 6

6 L0(
t∗ + t1∗

2
+ t1∗) < 1, (32)

so x∗ = x1
∗ is deduced, since T is invertible and

T (x∗ − x1
∗) = F (x∗)− F (x1

∗) = 0− 0 = 0. (33)

�

Remark. We can compute the computational order of convergence de-
fined by

a = ln
(‖xn+1 − x∗‖
‖xn − x∗‖

)/
ln
( ‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

b = ln
(‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln
( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.
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This way, we obtain, in practice, the order of convergence in a way that
avoids high Fréchet derivatives for the operator F and Taylor series used
in other studies.

3. Numerical Example.
Let B1 = B2 = R3, Ω = U(0, 1). Define F on Ω by

F (x) = F (u1, u2, u3) = (eu1 − 1,
e− 1

2
u2

2 + u2,u3)T . (34)

For the points u = (u1, u2, u3)T , the Fréchet derivative is given by

F ′(u) =

 eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows for x0 = (10−3, 10−3, 10−3)T ,
y = (10−4, 10−4, 10−4)T , we get L0 = 0.7(e−1), L = eρ, where ρ = 0.4118.
Then we have s = 0.0156, η = 0.0015,

γ0 = 0.0035 < γ = 0.6245 < 1− L0η

1− L0

2
s

= 0.9985, t∗∗ = 0.0015.

We have verified all the conditions of Theorem 1. Hence, we conclude that
lim
n→∞

xn = x∗ = (0, 0, 0)T .
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