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RIEMANN BOUNDARY-VALUE PROBLEM
ON CASSINI SPIRALS

Abstract. Recently, a number of papers has been published con-
cerning the Riemann boundary-value problems on spiral-like arcs.
In all these works, the spiral has the shape close to concentric cir-
cles, i. e., with equal rates of torsion in all directions. This paper
is the first study of this problem on spirals with oval turns.
Key words: Rimann boundary-value problem, non-rectifiable curve,
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1. Introduction. We consider the Riemann boundary-value problem
on an arc Γ. Its statement is well known. Let Γ be a directed simple
Jordan arc beginning at a point a1 and ending at a point a2. We seek for
all holomorphic in C \ Γ functions Φ(z), such that

(RP1) they have limit values Φ±(t) from the left and from the right at
any point t ∈ Γ′ := Γ \ {a1,2};

(RP2) these boundary values are connected by relation

Φ+(t) = G(t)Φ−(t) + g(t),

where G(t) and g(t) are given functions;
(RP3) Φ(∞) = 0;
(RP4) the desired functions Φ(z) satisfy the following bounds near the

end-points a1,2:

Φ(z) = O(|z − aj|−γj), 0 6 γj < 1, j = 1, 2.

There exists a great body of papers on this problem. In the classical
works (see, for instance, [1–3]) the arc Γ is assumed piecewise-smooth.
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Later, the Riemann problem was solved on non-rectifiable arcs [4–6].
However, these papers contain additional restrictions on behavior of the
arc Γ at its end-points. In order to describe these restrictions, we introduce
the so called logarithmic kernel of the arc Γ:

KΓ(z) :=
1

2πi
ln
z − a2

z − a1

.

It is a single-valued branch of logarithm, holomorphic in C \ Γ, and
uniquely determined by condition KΓ(∞) = 0. Clearly,

KΓ(z) = AΓ(z) +
1

2πi
ln

∣∣∣∣z − a2

z − a1

∣∣∣∣ ,
where AΓ(z) is a real-valued function. Generally speaking, singularities
of arbitrarily high orders at the points a1,2 are allowed. The Riemann
boundary-value problem on non-rectifiable arcs is solved in [4], [6] under
one of the following assumptions:

• if G(t) ≡ 1 (the so called jump problem) and KΓ(z) is square inte-
grable near the points a1,2;
• if g(t) ≡ 0 (the homogeneous problem) and KΓ(z) = O(− ln |z−aj|)

near the points aj, j = 1, 2;
• if the limits

lim
z→aj

KΓ(z)

ln |z − aj|
, j = 1, 2.

exist.

Recently, two articles [7], [8] have been published; they deal with the
Riemann problems on arcs with singularities of logarithmic kernels of
higher orders. The arc is called spiral of strong torsion if its logarith-
mic kernel is not integrable near one of its end-points. The solvability of
the Riemann boundary-value problem on such arcs essentially depends on
their shapes at the ends. In this paper, we study the Riemann boundary-
value problem on spirals of strong torsion with Cassini oval-like turns.

2. Cassini spirals. Cassini ovals1 are domains determined on the
complex plane by the relation

C(p, q) = {z : |z2 − q2| < p2}, p > q > 0.

1named after the famous astronomer and mathematician Giovanni Domenico
Cassini, 1625-1712
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In other words, it is the set of points such that the product of their dis-
tances from the focal points ±q is less than p2.

Note that equation of the boundary of such oval can be written as

z2 = q2 +
p4

z2 − q2
. (1)

Let C(p1,2, q1,2) be two Cassini ovals. Elementary transformations show
that if q1 < q2 and q2

2 − q2
1 < p2

2 − p2
1, then C(p1, q1) ⊂ C(p2, q2).

Fix two decreasing sequences of positive values p = {p1, p2, . . .} and
q = {q1, q2, . . .}, such that q2

n+1 − q2
n < p2

n+1 − p2
n for any positive inte-

ger n and lim
n→∞

pn = lim
n→∞

qn = 0, and consider the sequence of consec-
utively embedded Cassini ovals Cn = C(pn, qn), n = 1, 2, . . ., such that
∞⋂
n=1

Cn = {0}. Denote Rn := Cn \Cn+1. Let xn be the point of intersection

between boundary of the oval Cn with the positive ray of the real axis
R+ = [0,+∞).

In each domain Rn, we consider Jordan arcs γn beginning at the point
xn+1 and ending at xn. The domain ∆n to the left of the arc (respectively,
to the right) has the boundary γn ∪ [xn+1, xn]. Let the arcs be such that
this domain contains the oval Cn+1. The union of these arcs and the
point 0

Γ =
(
∪∞n=0 γn

)
∪
{

0
}

is called the left (respectively, right) Cassini spiral. It is directed from the
point 0 to the point x1. We define the signature of the spiral as the value
σΓ that equals +1 or −1 for the left and right spiral, correspondingly.

If Γ is a Cassini spiral, then the argument of its logarithmic kernel has
the asymptotic estimations

AΓ(z) = σΓ

+∞∑
n=1

χn(z) +O(1), z → 0,

AΓ(z) = O(1), z → x1,

where χn is the characteristic function of the oval Cn.
The oval C(p, q) satisfies the inclusion

{z : |z| <
√
p2 − q2} ⊂ C(p, q) ⊂ {z : |z| <

√
p2 + q2}.

Hence, if
+∞∑
n=1

(p2
n − q2

n) =∞, (2)
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then the Cassini spiral has strong torsion at the origin. For instance, this
concerns the spiral with qn = n−α, pn = kqn, 0 < α 6 1/2, k > 1.

If arc γn is rectifiable, then its length |γn| exceeds 2π
√
p2
n − q2

n, and,
under condition (2), the total length of Γ is infinite.

In what follows, we assume, for the sake of brevity, that Γ satisfies
the so called Luzin condition, i. e., any portion of Γ contains a rectifiable
subarc. As noted by N. I. Luzin, a curve with this property is erasable in
the class of continuous functions (see, for instance, [9]). Clearly, a curve
satisfying Luzin condition has null plane measure.

3. The jump problem. We consider first the jump problem, i. e.,
the problem (RP1) – (RP4) with G ≡ 1. In the piecewise smooth case, its
solution is given by the Cauchy type integral, but Cassini spirals of strong
torsion cannot be rectifiable, and this integral diverges. In order to build
a solution, we use the following functional classes.

As customary, the Lipschitz space Lip Γ consists of functions f defined
on Γ and satisfying the condition

sup
{ |f(t)− f(t′)|

|t− t′|
: t, t′ ∈ Γ, t 6= t′

}
:= Λ(f) < +∞.

The Taylor space Tm(Γ) consists of functions f representable as

f(τ) = Pf (τ, τ) + τmf0(τ), f0 ∈ Lip Γ,

where Pf (τ, τ) is the Taylor polynomial of degree less than m.
We use its subspaces: Tm0 (Γ) consists of functions f ∈ Tm(Γ) with

null Taylor polynomials; TmH (Γ) consists of functions f ∈ Tm(Γ) with
holomorphic Taylor polynomials; TmE (Γ) consists of functions f ∈ Tm(Γ),
such that the Taylor polynomial Pf (τ,τ) contains only even degrees of τ .

Let a Cassini spiral Γ satisfy the bound

KΓ(z) = O(|z|−m), z → 0, (3)

and g ∈ Tm0 (Γ). Consider the function

U(z) := KΓ(z)zmEg0(z)ψ(z),

where E is the Whitney extension operator (see, for instance, [10]), and
ψ(z) is a smooth function with compact support; it equals unit in a neigh-
borhood of Γ. The function

Φ0(z) := U(z)− 1

2πi

∫∫
C

∂U

∂ζ

dζ dζ

ζ − z
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is holomorphic in C \ Γ, vanishes at the infinity, has a jump g on Γ, and
satisfies the bounds

Φ0(z) = O(1), z → 0, Φ0(z) = g(x1)Kγ(z), z → x1 (4)

at the end-points of the arc. Hence, it is a solution of the jump in this
case.

Then, consider the case g ∈ TmH (Γ) and the function

Φ1(z) := Φ0(z) + Pg(z)KΓ(z)−Q(z),

where Q(z) is a holomorphic polynomial, such that the function Φ1 van-
ishes at the infinity. This polynomial exists and is unique. The function
Φ1 satisfies conditions (RP1) – (RP3), but the bounds (4) here turn into
the asymptotic formulae

Φ1(z) = Pg(z)KΓ(z) +O(1), z → 0, Φ1(z) = g(x1)Kγ(z), z → x1.

Hence, the problem with this jump becomes resolvable if we replace the
condition (RP4) by the bounds

Φ(z) = O(z−m), z → 0, Φ(z) = O(|z − x1|−γ), z → x1, 0 6 γ < 1,

which we call condition (RP5). The general solution can be written as

Φ(z) = Φ1(z) + z−mP (z), (5)

where P (z) is an arbitrary polynomial of degree less than m.
Let g ∈ TmE (Γ), i. e.,

g(t) = tmg0(t) + Pg(t, t), Pg(t, t) =

α+2β<m∑
α,β>0

cα,2βt
αt

2β
,

where g0 ∈ Lip Γ, α and β are non-negative integers, and cα,β are con-
stants. The function Φ0 has a jump tmg0(t). It remains to construct a
function with the jump Pg(t, t). Connect the end-points of the spiral Γ
with the segment I := [0, a1] and consider three jump problems:

Φ+
21(τ)− Φ−21(τ) = σP (τ, τ), τ ∈ ∪∞n=1∂∆′n,

Φ+
22(τ)− Φ−22(τ) = Pg(τ, τ), τ ∈ I,
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Φ+
3 (τ)− Φ−3 (τ) = σPg(τ, τ), τ ∈ ∪∞n=1Cn.

The contour of the first problem is the union of boundaries of the domains
∆′n := ∆n \ Cn+1. As these domains do not overlap, one of the solutions
is the generalized Cauchy-type integral

Φ1(z) := σP (z,z)− σ

2πi

∫∫
∪∞n=1∂∆′

n

∂P

∂w

dw dw

w − z
,

which is bounded in the whole complex plane and vanishes at the infinity.
The solution of the second problem is the customary integral of the

Cauchy type:

Φ2(z) =
1

2πi

∫
I

P (τ, τ) dτ

τ − z
,

with well-known properties.
Finally, the contour of the third problem is the infinite set of boundaries

of the Cassini ovals Cn. By virtue of the formula (1), the sum

S(z) :=
∞∑
n=1

χn(z)

α+2β<m∑
α,β>0

cα,2βz
α

(
q2
n +

p4
n

z2 − q2
n

)β
satisfies the boundary-value condition of the jump problem. It has poles at
points ±qn, but we can "erase" them by using the Mittag-Leffler theorem
(see, for instance, [11]). According to this theorem, there exists a function
M(z), meromorphic in C \ {0}, such that it has poles at the points ±qn
only, and its main parts at the poles coincide with the main parts of S(z).
Then the sum

Φ∗(z) = Φ0(z) + Φ1(z) + Φ2(z) + S(z)−M(z)

satisfies the conditions (RP1) – (RP3). Its asymptotic at the origin is
unknown.

Thus, we have proved the following

Theorem 1. Let the Cassini spiral of strong torsion Γ satisfy Luzin’s
condition and the bound (3). Then the following results are valid:

If g ∈ Tm0 (Γ), then the jump problem (RP1) – (RP4) has a unique
solution.
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If g ∈ TmH (Γ), then the jump problem (RP1), (RP1), (RP3), (RP5)
is resolvable, and its general solution is (5), where P (z) is an arbitrary
polynomial of degree less than m.

If g ∈ TmE (Γ), then the jump problem (RP1) – (RP3) is resolvable, and
its general solution is Φ∗(z) + F (z−1), where F (w) is an arbitrary entire
function, such that F (0) = 0.

4. Homogeneous problem. We consider here the homogeneous
Riemann boundary-value problem on a Cassini spiral of strong torsion,
putting g ≡ 0, G(t) = exp f(t), f ∈ Tm(Γ).

Assume first that f ∈ Tm0 (Γ). Let φ0(z) be a solution of the jump
problem with the jump f(t), i. e.,

φ(z) = u(z)− 1

2πi

∫∫
C

∂u

∂ζ

dζ dζ

ζ − z
,

where u(z) := KΓ(z)zmEf0(z)ψ(z). Denote X0(z) = expφ(z). Obviously,

X+
0 (t) = G(t)X−0 (t), t ∈ Γ′. (6)

This function is bounded near the origin, and near end-point of Γ we have

ln |X0(z)| = Re f(x1)KΓ(z) +O(1).

We put f(x1) = a+ ib, where a and b are real. Then

ln |X0(z)| = (2π)−1b ln |z − x1|+O(1), z → x1,

because the argument AΓ is bounded near x1. Denote by κ the entire
part of (2π)−1b, and put X(z) = (z − x1)−κX0(z). Clearly, for κ 6 0
this homogeneous Riemann problem has the null solution only, and for
κ > 0 its general solution is Φ(z) = X(z)P (z), where P is an arbitrary
polynomial of degree less than κ.

Now we consider the case f ∈ TmH (Γ). The corresponding solution of
the jump problem is

φ1(z) := φ0(z) + Pf (z)KΓ(z)−Q(z),

where Q(z) is the polynomial, such that φ1 vanishes at the infinity point.
We put X0(z) = expφ1(z). Clearly, it satisfies the boundary-value condi-
tion (6) and the estimate (). Therefore, the function
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X(z) := (z−x1)−κX0(z) has the asymptoticX(z) � (z−x1)−γ, 0 6 γ < 1,
at the point x1. Near the origin, we have

ln |X(z)| = AΓ(z) RePf (z) + (2π)−1 ln |z| ImPf (z) +O(1).

Let Φ(z) be a solution of the homogeneous problem (RP1) – (RP4). Then
the ratio F (z) = Φ(z)/X0(z) is holomorphic in C\{0,∞}, has order κ−1
at ∞, and satisfies the bound

|F (z)| � exp(−AΓ(z) RePf (z))

near the origin. Here we restrict ourselves by the case where the polyno-
mial Pf (z) has null of positive order k < m at the origin, i. e.,

Pf (z) =
m−1∑
n=k

cnz
n, ck 6= 0.

Then AΓ(z) RePf (z) = O(|zk−m). On the other hand, the function F (z)
is bounded on the set Z := {z : RePf (z) = 0}. This set contains 2k arcs
beginning at the origin, and these arcs divide a neighborhood of the origin
on curvilinear sectors with angles π/k at the origin. If k > m− k, then F
is holomorphic at the origin due to the Phragmen-Lindelöf principle (see,
for instance, [11]), and, consequently, F ≡ 0.

The results of the previous section enable us to solve also the homoge-
neous Riemann problem on a Cassini spiral for f ∈ TmE (Γ), but we do not
have a bound for its solution at the origin. In other words, the obtained
solution satisfies the conditions (R1) – (R3) only. Thus, the following the-
orem is proved:

Theorem 2. Let Cassini spiral of strong torsion Γ satisfy Luzin’s condi-
tion and the bound (3). Then the following results concerning the homo-
geneous Riemann problem are valid:

If G = exp f , f ∈ Tm0 (Γ), then the homogeneous problem
(RP1) – (RP4) for κ > 0 has a general solution Φ(z) = X(z)P (z), where
P is an arbitrary polynomial of degree less than κ, and it has the null
solution only for κ 6 0.

If G = exp f , f ∈ TmH (Γ) and the polynomial Pf (z) has a root of
order k at the origin, m > k > m/2, then the homogeneous problem
(RP1) – (RP4) has the null solution only.

If G = exp f , f ∈ TmE (Γ), then the homogeneous problem
(RP1) – (RP3) is resolvable.
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5. Inhomogeneous problem. Consider now one case of the full
Riemann boundary-value problem on a spiral. Let G = exp f , f ∈ Tm0 (Γ),
and g ∈ Tm0 (Γ). Then the customary factorization technique enables us
to imply the following result:

Theorem 3. Let the Cassini spiral of strong torsion Γ satisfy Luzin’s
condition and the bound (3), G = exp f , f ∈ Tm0 (Γ), and g ∈ Tm0 (Γ).
Then, for κ > 0, the inhomogeneous problem (RP1) – (RP4) has the gen-
eral solution Φ(z) = Ψ(z) + X(z)P (z), where Ψ(z) is its special solution
and P is an arbitrary polynomial of degree less than κ. For κ 6 0, it has
the unique solution under −κ solvability conditions.

We see that in this case the inhomogeneous Riemann boundary-value
problem on Cassini spirals has the same solvability pattern as the problem
on piecewise-smooth arcs [1–3]. Probably, its solution for boundary data
in spaces TmE (Γ) and TmH (Γ) is more sophisticated.
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